Skip to content

fFilterAssessment

FLF edited this page Jan 17, 2023 · 4 revisions

Assessment of filtered observation variants by relating pearson correlation metric (COR), sample number (SN) and optional mean absolute error (MAE=TRUE)

Source

https://github.com/EMRAgit/fPHASE/blob/master/function/fFilterAssessment.R

Parameters

  • IN.DIR -> directory of files containing accuracy metrics (result from function fDoyCrit)
  • PHASE -> DWD phase ID
  • PLANT -> DWD crop type ID
  • YEARS -> years of observation
  • F.STD -> standard deviation factor
  • MAE=TRUE -> mean absolute error is used to assess filtered observation variants

Output

  • [OPR-ALL]_[PLANT]-[PHASE].csv -> plant- and phase-specific accuracy metric variants

    • MAE -> Mean Absolute Error
    • MSE -> Mean Squared Error
    • COR -> Pearson correlation coefficient
    • RMSE -> Root Mean Squared Error
    • PLANT -> DWD crop type ID
    • PHASE -> DWD phase ID
    • SN -> Observation sample number
    • STD -> F.STD value
    • YEAR -> year of observation
    • OPT -> result of CORSN (MAE=FALSE) or CORSN/MAE (MAE=TRUE)
  • [OPT-MAX]_[PLANT]-[PHASE].csv -> optimal plant-, phase- and year-specific accuracy metric variants with OPT=max

    • MAE -> Mean Absolute Error
    • MSE -> Mean Squared Error
    • COR -> Pearson correlation coefficient
    • RMSE -> Root Mean Squared Error
    • PLANT -> DWD crop type ID
    • PHASE -> DWD phase ID
    • SN -> Observation sample number
    • STD -> F.STD value
    • YEAR -> year of observation
    • OPT -> maximum value of CORSN (MAE=FALSE) or CORSN/MAE (MAE=TRUE)

Clone this wiki locally