Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
83 changes: 64 additions & 19 deletions python/pyarrow/parquet/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -715,32 +715,77 @@ def _sanitized_spark_field_name(name):
return _SPARK_DISALLOWED_CHARS.sub('_', name)


def _sanitize_schema(schema, flavor):
if 'spark' in flavor:
sanitized_fields = []
def _sanitize_field_recursive(field):
"""
Recursively sanitize field names in struct types for Spark compatibility.

schema_changed = False
Returns
-------
tuple
(sanitized_field, changed) where changed is True if any sanitization occurred
"""
sanitized_name = _sanitized_spark_field_name(field.name)
sanitized_type = field.type
type_changed = False

if pa.types.is_struct(field.type):
sanitized_fields = [_sanitize_field_recursive(f) for f in field.type]
if any(changed for _, changed in sanitized_fields):
sanitized_type = pa.struct([f for f, _ in sanitized_fields])
type_changed = True
elif pa.types.is_list(field.type) or pa.types.is_large_list(field.type):
# Sanitize the value field of list types
value_field = field.type.value_field
sanitized_value_field, value_changed = _sanitize_field_recursive(value_field)
if value_changed:
if pa.types.is_list(field.type):
sanitized_type = pa.list_(sanitized_value_field)
else: # large_list
sanitized_type = pa.large_list(sanitized_value_field)
type_changed = True
elif pa.types.is_fixed_size_list(field.type):
# Sanitize the value field of fixed_size_list types
value_field = field.type.value_field
list_size = field.type.list_size
sanitized_value_field, value_changed = _sanitize_field_recursive(value_field)
if value_changed:
sanitized_type = pa.list_(sanitized_value_field, list_size)
type_changed = True
elif pa.types.is_map(field.type):
# Sanitize both key and item fields of map types
key_field = field.type.key_field
item_field = field.type.item_field
sanitized_key_field, key_changed = _sanitize_field_recursive(key_field)
sanitized_item_field, item_changed = _sanitize_field_recursive(item_field)
if key_changed or item_changed:
sanitized_type = pa.map_(sanitized_key_field, sanitized_item_field,
keys_sorted=field.type.keys_sorted)
type_changed = True

name_changed = sanitized_name != field.name
if name_changed or type_changed:
return pa.field(sanitized_name, sanitized_type, field.nullable,
field.metadata), True
return field, False

for field in schema:
name = field.name
sanitized_name = _sanitized_spark_field_name(name)

if sanitized_name != name:
schema_changed = True
sanitized_field = pa.field(sanitized_name, field.type,
field.nullable, field.metadata)
sanitized_fields.append(sanitized_field)
else:
sanitized_fields.append(field)

new_schema = pa.schema(sanitized_fields, metadata=schema.metadata)
return new_schema, schema_changed
else:
def _sanitize_schema(schema, flavor):
if 'spark' not in flavor:
return schema, False

sanitized_fields = []
schema_changed = False

for field in schema:
sanitized_field, changed = _sanitize_field_recursive(field)
sanitized_fields.append(sanitized_field)
schema_changed = schema_changed or changed

new_schema = pa.schema(sanitized_fields, metadata=schema.metadata)
return new_schema, schema_changed


def _sanitize_table(table, new_schema, flavor):
# TODO: This will not handle prohibited characters in nested field names
if 'spark' in flavor:
column_data = [table[i] for i in range(table.num_columns)]
return pa.Table.from_arrays(column_data, schema=new_schema)
Expand Down
123 changes: 118 additions & 5 deletions python/pyarrow/tests/parquet/test_basic.py
Original file line number Diff line number Diff line change
Expand Up @@ -613,14 +613,127 @@ def test_compression_level():


def test_sanitized_spark_field_names():
a0 = pa.array([0, 1, 2, 3, 4])
name = 'prohib; ,\t{}'
table = pa.Table.from_arrays([a0], [name])
field_metadata = {b'key': b'value'}
schema_metadata = {b'schema_key': b'schema_value'}

schema = pa.schema([
pa.field('prohib; ,\t{}', pa.int32()),
pa.field('field=with\nspecial', pa.string(), metadata=field_metadata),
pa.field('nested_struct', pa.struct([
pa.field('field,comma', pa.int32()),
pa.field('deeply{nested}', pa.struct([
pa.field('field(parens)', pa.float64()),
pa.field('normal_field', pa.bool_())
]))
]))
], metadata=schema_metadata)

data = [
pa.array([1, 2]),
pa.array(['a', 'b']),
pa.array([
{'field,comma': 10, 'deeply{nested}': {
'field(parens)': 1.5, 'normal_field': True}},
{'field,comma': 20, 'deeply{nested}': {
'field(parens)': 2.5, 'normal_field': False}}
], type=schema[2].type)
]

table = pa.Table.from_arrays(data, schema=schema)
result = _roundtrip_table(table, write_table_kwargs={'flavor': 'spark'})

assert result.schema[0].name == 'prohib______'
assert result.schema[1].name == 'field_with_special'

nested_type = result.schema[2].type
assert nested_type[0].name == 'field_comma'
assert nested_type[1].name == 'deeply_nested_'

deep_type = nested_type[1].type
assert deep_type[0].name == 'field_parens_'
assert deep_type[1].name == 'normal_field'

assert result.schema[1].metadata == field_metadata
assert result.schema.metadata == schema_metadata
assert len(result) == 2


def test_sanitized_spark_field_names_nested():
# Test that field name sanitization works for structs nested inside
# lists, maps, and other complex types
schema = pa.schema([
# List containing struct with special chars
pa.field('list;field', pa.list_(pa.field('item', pa.struct([
pa.field('field,name', pa.int32()),
pa.field('other{field}', pa.string())
])))),
# Large list with nested struct
pa.field('large=list', pa.large_list(pa.field('element', pa.struct([
pa.field('nested(field)', pa.float64())
])))),
# Fixed size list with nested struct
pa.field('fixed\tlist', pa.list_(pa.field('item', pa.struct([
pa.field('special field', pa.int32())
])), 2)),
# Map with structs in both key and value
pa.field('map field', pa.map_(
pa.field('key', pa.struct(
[pa.field('key;field', pa.string())]), nullable=False),
pa.field('value', pa.struct([pa.field('value,field', pa.int32())]))
))
])

list_data = pa.array([
[{'field,name': 1, 'other{field}': 'a'}],
[{'field,name': 2, 'other{field}': 'b'}]
], type=schema[0].type)

large_list_data = pa.array([
[{'nested(field)': 1.5}],
[{'nested(field)': 2.5}]
], type=schema[1].type)

fixed_list_data = pa.array([
[{'special field': 10}, {'special field': 20}],
[{'special field': 30}, {'special field': 40}]
], type=schema[2].type)

map_data = pa.array([
[({'key;field': 'k1'}, {'value,field': 100})],
[({'key;field': 'k2'}, {'value,field': 200})]
], type=schema[3].type)

table = pa.Table.from_arrays(
[list_data, large_list_data, fixed_list_data, map_data],
schema=schema
)

result = _roundtrip_table(table, write_table_kwargs={'flavor': 'spark'})

expected_name = 'prohib______'
assert result.schema[0].name == expected_name
# Check top-level field names are sanitized
assert result.schema[0].name == 'list_field'
assert result.schema[1].name == 'large_list'
assert result.schema[2].name == 'fixed_list'
assert result.schema[3].name == 'map_field'

# Check list value field's struct has sanitized names
list_value_type = result.schema[0].type.value_type
assert list_value_type[0].name == 'field_name'
assert list_value_type[1].name == 'other_field_'

# Check large list value field's struct has sanitized names
large_list_value_type = result.schema[1].type.value_type
assert large_list_value_type[0].name == 'nested_field_'

# Check fixed size list value field's struct has sanitized names
fixed_list_value_type = result.schema[2].type.value_type
assert fixed_list_value_type[0].name == 'special_field'

# Check map key and item structs have sanitized names
map_key_type = result.schema[3].type.key_type
map_item_type = result.schema[3].type.item_type
assert map_key_type[0].name == 'key_field'
assert map_item_type[0].name == 'value_field'


@pytest.mark.pandas
Expand Down
Loading