Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
.vscode/
.venv/
Illustrations/
18 changes: 18 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,3 +4,21 @@ The Python code to reproduce the illustrations from [The Hundred-Page Machine Le
![](http://themlbook.com/images/og-image3.png)

**WARNING!** To avoid buying counterfeit on Amazon, click on **[See All Buying Options](https://www.amazon.com/gp/offer-listing/199957950X/)** and choose "Amazon.com" and not a third-party seller.

# Getting Started
1. Create a virtual environment
```bash
py -m venv .venv
```
2. Activate the virtual environment
```bash
.venv/Scripts/activate
```
3. Install dependencies
```bash
pip install -r requirements.txt
```
4. Run one of the examples
```
py gradient_descent.py
```
202 changes: 201 additions & 1 deletion data.txt
Original file line number Diff line number Diff line change
@@ -1 +1,201 @@
The dataset for gradient descent example can be downloaded from: http://themlbook.com/wiki/doku.php?id=gradient_descent
,TV,radio,newspaper,sales
1,230.1,37.8,69.2,22.1
2,44.5,39.3,45.1,10.4
3,17.2,45.9,69.3,9.3
4,151.5,41.3,58.5,18.5
5,180.8,10.8,58.4,12.9
6,8.7,48.9,75,7.2
7,57.5,32.8,23.5,11.8
8,120.2,19.6,11.6,13.2
9,8.6,2.1,1,4.8
10,199.8,2.6,21.2,10.6
11,66.1,5.8,24.2,8.6
12,214.7,24,4,17.4
13,23.8,35.1,65.9,9.2
14,97.5,7.6,7.2,9.7
15,204.1,32.9,46,19
16,195.4,47.7,52.9,22.4
17,67.8,36.6,114,12.5
18,281.4,39.6,55.8,24.4
19,69.2,20.5,18.3,11.3
20,147.3,23.9,19.1,14.6
21,218.4,27.7,53.4,18
22,237.4,5.1,23.5,12.5
23,13.2,15.9,49.6,5.6
24,228.3,16.9,26.2,15.5
25,62.3,12.6,18.3,9.7
26,262.9,3.5,19.5,12
27,142.9,29.3,12.6,15
28,240.1,16.7,22.9,15.9
29,248.8,27.1,22.9,18.9
30,70.6,16,40.8,10.5
31,292.9,28.3,43.2,21.4
32,112.9,17.4,38.6,11.9
33,97.2,1.5,30,9.6
34,265.6,20,0.3,17.4
35,95.7,1.4,7.4,9.5
36,290.7,4.1,8.5,12.8
37,266.9,43.8,5,25.4
38,74.7,49.4,45.7,14.7
39,43.1,26.7,35.1,10.1
40,228,37.7,32,21.5
41,202.5,22.3,31.6,16.6
42,177,33.4,38.7,17.1
43,293.6,27.7,1.8,20.7
44,206.9,8.4,26.4,12.9
45,25.1,25.7,43.3,8.5
46,175.1,22.5,31.5,14.9
47,89.7,9.9,35.7,10.6
48,239.9,41.5,18.5,23.2
49,227.2,15.8,49.9,14.8
50,66.9,11.7,36.8,9.7
51,199.8,3.1,34.6,11.4
52,100.4,9.6,3.6,10.7
53,216.4,41.7,39.6,22.6
54,182.6,46.2,58.7,21.2
55,262.7,28.8,15.9,20.2
56,198.9,49.4,60,23.7
57,7.3,28.1,41.4,5.5
58,136.2,19.2,16.6,13.2
59,210.8,49.6,37.7,23.8
60,210.7,29.5,9.3,18.4
61,53.5,2,21.4,8.1
62,261.3,42.7,54.7,24.2
63,239.3,15.5,27.3,15.7
64,102.7,29.6,8.4,14
65,131.1,42.8,28.9,18
66,69,9.3,0.9,9.3
67,31.5,24.6,2.2,9.5
68,139.3,14.5,10.2,13.4
69,237.4,27.5,11,18.9
70,216.8,43.9,27.2,22.3
71,199.1,30.6,38.7,18.3
72,109.8,14.3,31.7,12.4
73,26.8,33,19.3,8.8
74,129.4,5.7,31.3,11
75,213.4,24.6,13.1,17
76,16.9,43.7,89.4,8.7
77,27.5,1.6,20.7,6.9
78,120.5,28.5,14.2,14.2
79,5.4,29.9,9.4,5.3
80,116,7.7,23.1,11
81,76.4,26.7,22.3,11.8
82,239.8,4.1,36.9,12.3
83,75.3,20.3,32.5,11.3
84,68.4,44.5,35.6,13.6
85,213.5,43,33.8,21.7
86,193.2,18.4,65.7,15.2
87,76.3,27.5,16,12
88,110.7,40.6,63.2,16
89,88.3,25.5,73.4,12.9
90,109.8,47.8,51.4,16.7
91,134.3,4.9,9.3,11.2
92,28.6,1.5,33,7.3
93,217.7,33.5,59,19.4
94,250.9,36.5,72.3,22.2
95,107.4,14,10.9,11.5
96,163.3,31.6,52.9,16.9
97,197.6,3.5,5.9,11.7
98,184.9,21,22,15.5
99,289.7,42.3,51.2,25.4
100,135.2,41.7,45.9,17.2
101,222.4,4.3,49.8,11.7
102,296.4,36.3,100.9,23.8
103,280.2,10.1,21.4,14.8
104,187.9,17.2,17.9,14.7
105,238.2,34.3,5.3,20.7
106,137.9,46.4,59,19.2
107,25,11,29.7,7.2
108,90.4,0.3,23.2,8.7
109,13.1,0.4,25.6,5.3
110,255.4,26.9,5.5,19.8
111,225.8,8.2,56.5,13.4
112,241.7,38,23.2,21.8
113,175.7,15.4,2.4,14.1
114,209.6,20.6,10.7,15.9
115,78.2,46.8,34.5,14.6
116,75.1,35,52.7,12.6
117,139.2,14.3,25.6,12.2
118,76.4,0.8,14.8,9.4
119,125.7,36.9,79.2,15.9
120,19.4,16,22.3,6.6
121,141.3,26.8,46.2,15.5
122,18.8,21.7,50.4,7
123,224,2.4,15.6,11.6
124,123.1,34.6,12.4,15.2
125,229.5,32.3,74.2,19.7
126,87.2,11.8,25.9,10.6
127,7.8,38.9,50.6,6.6
128,80.2,0,9.2,8.8
129,220.3,49,3.2,24.7
130,59.6,12,43.1,9.7
131,0.7,39.6,8.7,1.6
132,265.2,2.9,43,12.7
133,8.4,27.2,2.1,5.7
134,219.8,33.5,45.1,19.6
135,36.9,38.6,65.6,10.8
136,48.3,47,8.5,11.6
137,25.6,39,9.3,9.5
138,273.7,28.9,59.7,20.8
139,43,25.9,20.5,9.6
140,184.9,43.9,1.7,20.7
141,73.4,17,12.9,10.9
142,193.7,35.4,75.6,19.2
143,220.5,33.2,37.9,20.1
144,104.6,5.7,34.4,10.4
145,96.2,14.8,38.9,11.4
146,140.3,1.9,9,10.3
147,240.1,7.3,8.7,13.2
148,243.2,49,44.3,25.4
149,38,40.3,11.9,10.9
150,44.7,25.8,20.6,10.1
151,280.7,13.9,37,16.1
152,121,8.4,48.7,11.6
153,197.6,23.3,14.2,16.6
154,171.3,39.7,37.7,19
155,187.8,21.1,9.5,15.6
156,4.1,11.6,5.7,3.2
157,93.9,43.5,50.5,15.3
158,149.8,1.3,24.3,10.1
159,11.7,36.9,45.2,7.3
160,131.7,18.4,34.6,12.9
161,172.5,18.1,30.7,14.4
162,85.7,35.8,49.3,13.3
163,188.4,18.1,25.6,14.9
164,163.5,36.8,7.4,18
165,117.2,14.7,5.4,11.9
166,234.5,3.4,84.8,11.9
167,17.9,37.6,21.6,8
168,206.8,5.2,19.4,12.2
169,215.4,23.6,57.6,17.1
170,284.3,10.6,6.4,15
171,50,11.6,18.4,8.4
172,164.5,20.9,47.4,14.5
173,19.6,20.1,17,7.6
174,168.4,7.1,12.8,11.7
175,222.4,3.4,13.1,11.5
176,276.9,48.9,41.8,27
177,248.4,30.2,20.3,20.2
178,170.2,7.8,35.2,11.7
179,276.7,2.3,23.7,11.8
180,165.6,10,17.6,12.6
181,156.6,2.6,8.3,10.5
182,218.5,5.4,27.4,12.2
183,56.2,5.7,29.7,8.7
184,287.6,43,71.8,26.2
185,253.8,21.3,30,17.6
186,205,45.1,19.6,22.6
187,139.5,2.1,26.6,10.3
188,191.1,28.7,18.2,17.3
189,286,13.9,3.7,15.9
190,18.7,12.1,23.4,6.7
191,39.5,41.1,5.8,10.8
192,75.5,10.8,6,9.9
193,17.2,4.1,31.6,5.9
194,166.8,42,3.6,19.6
195,149.7,35.6,6,17.3
196,38.2,3.7,13.8,7.6
197,94.2,4.9,8.1,9.7
198,177,9.3,6.4,12.8
199,283.6,42,66.2,25.5
200,232.1,8.6,8.7,13.4
41 changes: 32 additions & 9 deletions gradient_descent.py
Original file line number Diff line number Diff line change
@@ -1,15 +1,31 @@
from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
import pathlib

import matplotlib
matplotlib.rcParams['mathtext.fontset'] = 'stix'
matplotlib.rcParams['font.family'] = 'STIXGeneral'
matplotlib.rcParams.update({'font.size': 18})

# constants for columns in data.txt
TV_COL=1;
RADIO_COL=2;
PAPER_COL=3;
SALES_COL=4

# platform agnostic path to the output directory
output_dir = pathlib.Path.cwd() / 'Illustrations'
output_dir.mkdir(parents=True, exist_ok=True)

def plot_original_data():
x, y = np.loadtxt("data.txt", delimiter= "\t", unpack = True)
x, y = np.loadtxt(
"data.txt",
skiprows=1,
usecols=(RADIO_COL, SALES_COL),
delimiter= ",",
unpack = True,
)

plt.scatter(x, y, color='#1f77b4', marker='o')

Expand All @@ -19,9 +35,9 @@ def plot_original_data():
#plt.show()
fig1 = plt.gcf()
fig1.subplots_adjust(top = 0.98, bottom = 0.1, right = 0.98, left = 0.08, hspace = 0, wspace = 0)
fig1.savefig('../../Illustrations/gradient_descent-1.eps', format='eps', dpi=1000, bbox_inches = 'tight', pad_inches = 0)
fig1.savefig('../../Illustrations/gradient_descent-1.pdf', format='pdf', dpi=1000, bbox_inches = 'tight', pad_inches = 0)
fig1.savefig('../../Illustrations/gradient_descent-1.png', dpi=1000, bbox_inches = 'tight', pad_inches = 0)
fig1.savefig(output_dir / 'gradient_descent-1.eps', format='eps', dpi=1000, bbox_inches = 'tight', pad_inches = 0)
fig1.savefig(output_dir / 'gradient_descent-1.pdf', format='pdf', dpi=1000, bbox_inches = 'tight', pad_inches = 0)
fig1.savefig(output_dir / 'gradient_descent-1.png', dpi=1000, bbox_inches = 'tight', pad_inches = 0)

def update_w_and_b(spendings, sales, w, b, alpha):
dr_dw = 0.0
Expand Down Expand Up @@ -57,9 +73,9 @@ def train(spendings, sales, w, b, alpha, epochs):
#plt.show()
fig1 = plt.gcf()
fig1.subplots_adjust(top = 0.98, bottom = 0.1, right = 0.98, left = 0.08, hspace = 0, wspace = 0)
fig1.savefig('../../Illustrations/gradient_descent-' + str(image_counter) + '.eps', format='eps', dpi=1000, bbox_inches = 'tight', pad_inches = 0)
fig1.savefig('../../Illustrations/gradient_descent-' + str(image_counter) + '.pdf', format='pdf', dpi=1000, bbox_inches = 'tight', pad_inches = 0)
fig1.savefig('../../Illustrations/gradient_descent-' + str(image_counter) + '.png', dpi=1000, bbox_inches = 'tight', pad_inches = 0)
fig1.savefig(output_dir / ('gradient_descent-' + str(image_counter) + '.eps'), format='eps', dpi=1000, bbox_inches = 'tight', pad_inches = 0)
fig1.savefig(output_dir / ('gradient_descent-' + str(image_counter) + '.pdf'), format='pdf', dpi=1000, bbox_inches = 'tight', pad_inches = 0)
fig1.savefig(output_dir / ('gradient_descent-' + str(image_counter) + '.png'), dpi=1000, bbox_inches = 'tight', pad_inches = 0)
image_counter += 1
return w, b

Expand All @@ -70,8 +86,15 @@ def loss(spendings, sales, w, b):
total_error += (sales[i] - (w*spendings[i] + b))**2
return total_error / N

x, y = np.loadtxt("data.txt", delimiter= "\t", unpack = True)
#w, b = train(x, y, 0.0, 0.0, 0.001, 15000)
x, y = np.loadtxt(
"data.txt",
skiprows=1,
usecols=(RADIO_COL, SALES_COL),
delimiter= ",",
unpack = True,
)

w, b = train(x, y, 0.0, 0.0, 0.001, 15000)

plot_original_data()

Expand Down
56 changes: 56 additions & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
absl-py==2.1.0
astunparse==1.6.3
certifi==2024.12.14
charset-normalizer==3.4.0
colorama==0.4.6
contourpy==1.3.1
cycler==0.12.1
flatbuffers==24.3.25
fonttools==4.55.3
gast==0.6.0
google-pasta==0.2.0
grpcio==1.68.1
h5py==3.12.1
idna==3.10
joblib==1.4.2
keras==3.7.0
kiwisolver==1.4.7
libclang==18.1.1
llvmlite==0.43.0
Markdown==3.7
markdown-it-py==3.0.0
MarkupSafe==3.0.2
matplotlib==3.10.0
mdurl==0.1.2
ml-dtypes==0.4.1
namex==0.0.8
numba==0.60.0
numpy==2.0.2
opt_einsum==3.4.0
optree==0.13.1
packaging==24.2
pillow==11.0.0
protobuf==5.29.1
Pygments==2.18.0
pynndescent==0.5.13
pyparsing==3.2.0
python-dateutil==2.9.0.post0
requests==2.32.3
rich==13.9.4
scikit-learn==1.6.0
scipy==1.14.1
setuptools==75.6.0
six==1.17.0
tensorboard==2.18.0
tensorboard-data-server==0.7.2
tensorflow==2.18.0
tensorflow_intel==2.18.0
termcolor==2.5.0
threadpoolctl==3.5.0
tqdm==4.67.1
typing_extensions==4.12.2
umap-learn==0.5.7
urllib3==2.2.3
Werkzeug==3.1.3
wheel==0.45.1
wrapt==1.17.0