Skip to content

Official codebase for "Brain Harmony: A Multimodal Foundation Model Unifying Morphology and Function into 1D Tokens" (NeruIPS 2025).

Notifications You must be signed in to change notification settings

MedARC-AI/Brain-Harmony

 
 

Repository files navigation

BrainHarmonix 🧠✨

Official repository of the paper
Brain Harmony: A Multimodal Foundation Model Unifying Morphology and Function into 1D Tokens (NeurIPS 2025) Paper License: CC BY-NC-SA 4.0

Overview

Brain Harmony Model

Schematic overview of BrainHarmonix.

🏗️ Project Architecture

BrainHarmonix/
├── modules/harmonizer/          # Core training modules
│   ├── stage0_embed/           # Stage 0: Embedding extraction
│   ├── stage1_pretrain/        # Stage 1: Self-supervised pretraining
│   ├── stage2_finetune/        # Stage 2: Downstream task finetuning
│   └── util/                   # Utility functions
├── libs/                       # Core library files
│   ├── flex_transformer.py    # Flexible transformer architecture
│   ├── flex_patch_embed.py    # Flexible patch embedding
│   ├── position_embedding.py  # Position encoding modules
│   └── masks/                 # Masking strategies
├── datasets/                   # Dataset processing
├── configs/                    # Configuration files
├── checkpoints/                # Pretrained model weights
│   ├── harmonix-f/            # fMRI pretrained models
│   ├── harmonix-s/            # T1 structural pretrained models
│   └── harmonizer/            # Joint pretrained models
├── scripts/                    # Training scripts
└── experiments/                # Training outputs

🚀 Quick Start

Environment Setup

Conda Environment (Recommended)

# Create conda environment
conda create -n brainharmonix python=3.10
conda activate brainharmonix

pip install torch==2.6.0 torchvision==0.21.0 --index-url https://download.pytorch.org/whl/cu124

pip install packaging==25.0 ninja==1.11.1.4

pip install -r requirements.txt

pip install -e .

Download Pretrained Checkpoints

Download Pretrained Checkpoints

Place the downloaded checkpoints in:

  • checkpoints/harmonix-f/ — fMRI pretrained models
  • checkpoints/harmonix-s/ — T1 structural pretrained models
  • checkpoints/harmonizer/ — Joint pretrained models

Training Pipeline

Stage 0: Embedding Extraction

# Generate embeddings for pretraining
bash scripts/harmonizer/stage0_embed/run_embed_pretrain.sh configs/harmonizer/stage0_embed/conf_embed_pretrain.py

Stage 1: Self-supervised Pretraining

# Run pretraining with specified model size and latent tokens
bash scripts/harmonizer/stage1_pretrain/run_pretrain.sh base 128

Stage 2: Downstream Task Finetuning

# Finetune on downstream tasks (e.g., ABIDE dataset)
bash scripts/harmonizer/stage2_finetune/run_finetune.sh base 128 AbideI 0

Citation

If you find this repository useful, please cite our NeurIPS 2025 paper:

@inproceedings{dong2025brain,
  title={Brain Harmony: A Multimodal Foundation Model Unifying Morphology and Function into 1D Tokens},
  author={Dong, Zijian and Li, Ruilin and Chong, Joanna Su Xian and Dehestani, Niousha and Teng, Yinghui and Lin, Yi and Li, Zhizhou and Zhang, Yichi and Xie, Yapei and Ooi, Leon Qi Rong and others},
  booktitle={Proceedings of the 39th Conference on Neural Information Processing Systems (NeurIPS)},
  year={2025}
}

BrainHarmonix - Advancing Brain Imaging Analysis with AI 🧠🤖

About

Official codebase for "Brain Harmony: A Multimodal Foundation Model Unifying Morphology and Function into 1D Tokens" (NeruIPS 2025).

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 94.2%
  • Shell 5.8%