Official repository of the paper
Brain Harmony: A Multimodal Foundation Model Unifying Morphology and Function into 1D Tokens (NeurIPS 2025)
Schematic overview of BrainHarmonix.
BrainHarmonix/
├── modules/harmonizer/ # Core training modules
│ ├── stage0_embed/ # Stage 0: Embedding extraction
│ ├── stage1_pretrain/ # Stage 1: Self-supervised pretraining
│ ├── stage2_finetune/ # Stage 2: Downstream task finetuning
│ └── util/ # Utility functions
├── libs/ # Core library files
│ ├── flex_transformer.py # Flexible transformer architecture
│ ├── flex_patch_embed.py # Flexible patch embedding
│ ├── position_embedding.py # Position encoding modules
│ └── masks/ # Masking strategies
├── datasets/ # Dataset processing
├── configs/ # Configuration files
├── checkpoints/ # Pretrained model weights
│ ├── harmonix-f/ # fMRI pretrained models
│ ├── harmonix-s/ # T1 structural pretrained models
│ └── harmonizer/ # Joint pretrained models
├── scripts/ # Training scripts
└── experiments/ # Training outputs
# Create conda environment
conda create -n brainharmonix python=3.10
conda activate brainharmonix
pip install torch==2.6.0 torchvision==0.21.0 --index-url https://download.pytorch.org/whl/cu124
pip install packaging==25.0 ninja==1.11.1.4
pip install -r requirements.txt
pip install -e .Place the downloaded checkpoints in:
checkpoints/harmonix-f/— fMRI pretrained modelscheckpoints/harmonix-s/— T1 structural pretrained modelscheckpoints/harmonizer/— Joint pretrained models
# Generate embeddings for pretraining
bash scripts/harmonizer/stage0_embed/run_embed_pretrain.sh configs/harmonizer/stage0_embed/conf_embed_pretrain.py# Run pretraining with specified model size and latent tokens
bash scripts/harmonizer/stage1_pretrain/run_pretrain.sh base 128# Finetune on downstream tasks (e.g., ABIDE dataset)
bash scripts/harmonizer/stage2_finetune/run_finetune.sh base 128 AbideI 0If you find this repository useful, please cite our NeurIPS 2025 paper:
@inproceedings{dong2025brain,
title={Brain Harmony: A Multimodal Foundation Model Unifying Morphology and Function into 1D Tokens},
author={Dong, Zijian and Li, Ruilin and Chong, Joanna Su Xian and Dehestani, Niousha and Teng, Yinghui and Lin, Yi and Li, Zhizhou and Zhang, Yichi and Xie, Yapei and Ooi, Leon Qi Rong and others},
booktitle={Proceedings of the 39th Conference on Neural Information Processing Systems (NeurIPS)},
year={2025}
}BrainHarmonix - Advancing Brain Imaging Analysis with AI 🧠🤖
