Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
262 changes: 262 additions & 0 deletions .ipynb_checkpoints/task 1(updated)-checkpoint.ipynb

Large diffs are not rendered by default.

164 changes: 164 additions & 0 deletions .ipynb_checkpoints/task 2(updated)-checkpoint.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,164 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import time"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [],
"source": [
"x = np.random.rand(10,1)\n",
"y = np.random.rand(10,1)"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [],
"source": [
"y = y.T"
]
},
{
"cell_type": "code",
"execution_count": 81,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.00028896331787109375\n"
]
}
],
"source": [
"start = time.time()\n",
"z = np.dot(y,x)\n",
"end = time.time()\n",
"print (end - start)"
]
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {},
"outputs": [],
"source": [
"sum =0"
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.0004093647003173828\n"
]
}
],
"source": [
"start = time.time()\n",
"for i in range(10):\n",
" sum = sum + (y[0][i]*x[i][0])\n",
"end = time.time()\n",
"print (end - start)"
]
},
{
"cell_type": "code",
"execution_count": 94,
"metadata": {},
"outputs": [],
"source": [
"sum1 = 0"
]
},
{
"cell_type": "code",
"execution_count": 93,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.0007643699645996094\n"
]
}
],
"source": [
"start = time.time()\n",
"for i in range(10):\n",
" sum1 = sum1 + (x[i][0]*y[0][i])\n",
"end = time.time()\n",
"print (end - start)"
]
},
{
"cell_type": "code",
"execution_count": 100,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 100,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sum == sum1"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#np.dot takes less time compared to loop"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
172 changes: 172 additions & 0 deletions .ipynb_checkpoints/task1-checkpoint.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,172 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([ 10, 110, 210, 310, 410, 510, 611, 711, 811,\n",
" 911, 1011, 1111, 1212, 1312, 1412, 1512, 1612, 1713,\n",
" 1813, 1913, 2013, 2113, 2213, 2314, 2414, 2514, 2614,\n",
" 2714, 2815, 2915, 3015, 3115, 3215, 3315, 3416, 3516,\n",
" 3616, 3716, 3816, 3917, 4017, 4117, 4217, 4317, 4417,\n",
" 4518, 4618, 4718, 4818, 4918, 5019, 5119, 5219, 5319,\n",
" 5419, 5519, 5620, 5720, 5820, 5920, 6020, 6121, 6221,\n",
" 6321, 6421, 6521, 6621, 6722, 6822, 6922, 7022, 7122,\n",
" 7222, 7323, 7423, 7523, 7623, 7723, 7824, 7924, 8024,\n",
" 8124, 8224, 8324, 8425, 8525, 8625, 8725, 8825, 8926,\n",
" 9026, 9126, 9226, 9326, 9426, 9527, 9627, 9727, 9827,\n",
" 9927, 10028, 10128, 10228, 10328, 10428, 10528, 10629, 10729,\n",
" 10829, 10929, 11029, 11130, 11230, 11330, 11430, 11530, 11630,\n",
" 11731, 11831, 11931, 12031, 12131, 12232, 12332, 12432, 12532,\n",
" 12632, 12732, 12833, 12933, 13033, 13133, 13233, 13333, 13434,\n",
" 13534, 13634, 13734, 13834, 13935, 14035, 14135, 14235, 14335,\n",
" 14435, 14536, 14636, 14736, 14836, 14936, 15037, 15137, 15237,\n",
" 15337, 15437, 15537, 15638, 15738, 15838, 15938, 16038, 16139,\n",
" 16239, 16339, 16439, 16539, 16639, 16740, 16840, 16940, 17040,\n",
" 17140, 17241, 17341, 17441, 17541, 17641, 17741, 17842, 17942,\n",
" 18042, 18142, 18242, 18343, 18443, 18543, 18643, 18743, 18843,\n",
" 18944, 19044, 19144, 19244, 19344, 19444, 19545, 19645, 19745,\n",
" 19845, 19945, 20046, 20146, 20246, 20346, 20446, 20546, 20647,\n",
" 20747, 20847, 20947, 21047, 21148, 21248, 21348, 21448, 21548,\n",
" 21648, 21749, 21849, 21949, 22049, 22149, 22250, 22350, 22450,\n",
" 22550, 22650, 22750, 22851, 22951, 23051, 23151, 23251, 23352,\n",
" 23452, 23552, 23652, 23752, 23852, 23953, 24053, 24153, 24253,\n",
" 24353, 24454, 24554, 24654, 24754, 24854, 24954, 25055, 25155,\n",
" 25255, 25355, 25455, 25555, 25656, 25756, 25856, 25956, 26056,\n",
" 26157, 26257, 26357, 26457, 26557, 26657, 26758, 26858, 26958,\n",
" 27058, 27158, 27259, 27359, 27459, 27559, 27659, 27759, 27860,\n",
" 27960, 28060, 28160, 28260, 28361, 28461, 28561, 28661, 28761,\n",
" 28861, 28962, 29062, 29162, 29262, 29362, 29463, 29563, 29663,\n",
" 29763, 29863, 29963, 30064, 30164, 30264, 30364, 30464, 30565,\n",
" 30665, 30765, 30865, 30965, 31065, 31166, 31266, 31366, 31466,\n",
" 31566, 31666, 31767, 31867, 31967, 32067, 32167, 32268, 32368,\n",
" 32468, 32568, 32668, 32768, 32869, 32969, 33069, 33169, 33269,\n",
" 33370, 33470, 33570, 33670, 33770, 33870, 33971, 34071, 34171,\n",
" 34271, 34371, 34472, 34572, 34672, 34772, 34872, 34972, 35073,\n",
" 35173, 35273, 35373, 35473, 35574, 35674, 35774, 35874, 35974,\n",
" 36074, 36175, 36275, 36375, 36475, 36575, 36676, 36776, 36876,\n",
" 36976, 37076, 37176, 37277, 37377, 37477, 37577, 37677, 37777,\n",
" 37878, 37978, 38078, 38178, 38278, 38379, 38479, 38579, 38679,\n",
" 38779, 38879, 38980, 39080, 39180, 39280, 39380, 39481, 39581,\n",
" 39681, 39781, 39881, 39981, 40082, 40182, 40282, 40382, 40482,\n",
" 40583, 40683, 40783, 40883, 40983, 41083, 41184, 41284, 41384,\n",
" 41484, 41584, 41685, 41785, 41885, 41985, 42085, 42185, 42286,\n",
" 42386, 42486, 42586, 42686, 42787, 42887, 42987, 43087, 43187,\n",
" 43287, 43388, 43488, 43588, 43688, 43788, 43888, 43989, 44089,\n",
" 44189, 44289, 44389, 44490, 44590, 44690, 44790, 44890, 44990,\n",
" 45091, 45191, 45291, 45391, 45491, 45592, 45692, 45792, 45892,\n",
" 45992, 46092, 46193, 46293, 46393, 46493, 46593, 46694, 46794,\n",
" 46894, 46994, 47094, 47194, 47295, 47395, 47495, 47595, 47695,\n",
" 47796, 47896, 47996, 48096, 48196, 48296, 48397, 48497, 48597,\n",
" 48697, 48797, 48898, 48998, 49098, 49198, 49298, 49398, 49499,\n",
" 49599, 49699, 49799, 49899, 50000])"
]
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%matplotlib inline\n",
"import numpy as np\n",
"import random\n",
"x = np.linspace(10,50000,500)\n",
"x = x.astype(int)\n",
"x\n"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([-0.02266808, -0.08934166, -0.02462187, -0.41728575, -0.45418811,\n",
" -0.13013111, -0.71341838, -0.04787425, -0.16391377, -0.46504352,\n",
" -0.53243525, -0.49251806, -0.23805297, -0.65576994, -0.86601395,\n",
" -0.17225647, -0.29502642, -0.01952544, -0.41306327, -0.01171141,\n",
" -0.04473519, -0.140517 , -0.24972813, -0.04535645, -0.08644707,\n",
" -0.14986849, -0.20482458, -0.09479918, -0.29093532, -0.13910937,\n",
" -0.18052547, -0.06193589, -0.00959261, -0.16663713, -0.24758673,\n",
" -0.08250443, -0.15339983, -0.08080936, -0.04947501, -0.06434988,\n",
" -0.07135629, -0.65977086, -0.03092095, -0.36986666, -0.35934959,\n",
" -0.08372994, -0.10610554, -0.28453658, -0.41513806, -0.0734825 ])"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"y = (5**(-1))*np.log(x)\n",
"y"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD8CAYAAACRkhiPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAFY9JREFUeJzt3X+MXWd95/H315MJnaiFCU022CZTs2qwSAibtLMQFlG6xNQsEthLu4FsUc0K1qui7h/b1qqjoCbbdpd0LVpUtWrXBUSgXRrCZgdXULnBULFCOGIik7oJ6yawNMnYJCHFkVCG7TD+7h/3jnt9fe/ce+fcub+e90uKfO65z8x5jh2dzznP85znicxEklSmLcOugCRpeAwBSSqYISBJBTMEJKlghoAkFcwQkKSCGQKSVDBDQJIKZghIUsEuGXYF2rniiityx44dw66GJI2VBx988DuZeWW35Uc2BHbs2MHi4uKwqyFJYyUi/q6X8jYHSVLBDAFJKpghIEkFMwQkqWCGgCQVzBCQpIL1JQQi4s0RcSoiHouIgy2+f0FE3FP//oGI2NGP40qSqqkcAhExBfwB8K+Aa4FbI+LapmLvAb6bmT8O/C7w21WPK0mqrh8vi70aeCwzvwkQEX8G7AEeaSizB7izvv1p4PcjItIFjiUVbuHEEoeOnuL02WW2zc5wYPdO9t64fWDH70cIbAeeaPj8JPCadmUy8wcR8Rzwo8B3GgtFxH5gP8Dc3FwfqiZJo2ftwr90dpkA1u6Gl84uc9t9JwEGFgQj1TGcmYczcz4z56+8suupLyRpbCycWOK2+06ydHYZ+McAWLO8ssqho6cGVp9+PAksAVc3fH5pfV+rMk9GxCXAi4Bn+3BsSRq4Vk04QFfNOoeOnmJ5ZXXd33+6HhCD0I8Q+CpwTUS8jNrF/p3Av20qcwTYB3wF+DngC/YHSBon6zXhHLj3IQhYWc3z+9o163Rzgd82O9PPqq+rcgjU2/h/CTgKTAEfzcyHI+I3gMXMPAJ8BPhERDwG/D21oJCkkbFeB+1aE87aHXzzHezKuYvvadeadZpDYNvszPmmoFZmpqfOP1kMQl+mks7MzwGfa9r36w3b3wf+TT+OJUn91nyRb76T76YJp5VWd/0Hdu+84FjA+SeL7WM6OkiSxlqri3zjnfxG2+hbNeusXeCHOSy0kSEgaWy9f+Ekn3zgCVYzmYrg1tdczW/tvb7n39PuIr+2v1MTzvSWuKBPANZv1tl74/ahXfSbGQKSRl5jp+xUBKuZzExvYXnl3Pkyq5n8yfHHAXoOgnYX+bU7+W6acGB07u57YQhIGmnN7fWr9YGFjQHQ6JMPPNFzCLS6yDfeyXfbhDMOF/1mhoCkkdZrp+zqBkafd3ORH6UmnH4yBCQNxEbnyOm1U3YqYkP1m9SLfCeGgKRNtXBiif/85w/z3edXzu/rZY6cTp2yzW59zdWdC+m8kZo7SNL4WTixxOvu+gIvO/hZXnfXF1g4sXTBd7fdd/KCAFjT7Rw5B3bvZGZ6quV3W4At9Rv/qQjeddPchkYHlcwnAUk963YWzE7t+d009TS21zeODhrGi1WTyBCQdJEqUyj08pJVt3PklNpePwiGgCTgwrv7RhuZQqGbl6wGPUeOWjMEpAI13um/aGaaf/jBKs+3GXcPvU+hsN5LVgCzM9Pc+bbrvLsfAYaANMHazXvfeGE+u3xxp20r3U6hsJGXrDQ8hoA0odrNjPmCS7ZsaEbMXqZQKOElq0lhCEgTqt3MmBsJgADv7ieUISCNmW7fvO3XEoUB/PxNc97dTyhDQBojnRY/adSu7f7yy6b5/sq5dZ8ItgScy+EscqLBMgSkMdJp8ZNG7WbGvOOt153/XWujgyLg7PMrNu0UyBCQxkinxU8adWq790IvMASksdJp8ZNmtt2rEyeQkzbRepOrbUSrydR881ZV+CQgbZJeOnG75fBM9ZshIFXUbshmL524vbCJR/1kCEgVvH/hJH96/PGWUyn30okrDYt9AtIGLZxYuiAA1qzd7bfrrO12+mRpEHwSkFpobOKZvWyaTHhueeWi5p52S5qfPrvM777jhpbj9O3E1SgxBKQmzR267dbGXa9ZZ9vsjJ24GguGgNSk06Ipjc09rcbsN0+25kVfo8wQUFEaV89qt1ZtNx237Zp7Wk22Jo0yQ0DFaG7mWc1ai37z+P1Oi6aAzT2aHIaAJl67tXMbNY7fb7ck4prmlbO86GucGQKaaM13/+tZawZqvsNvNzpImgSGgCZGqzd3O3XyNmocv+8dvkphCGgitJunp9sAcPy+SmUIaCK0m6dnbQRQK+1GB0klqRQCEfFi4B5gB/At4JbM/G5TmRuAPwReCKwC/yUz76lyXKlZu2Gdq5nMTE9d9NbuB95+vRd9iepzBx0EjmXmNcCx+udmzwO/kJnXAW8GPhQRsxWPK12g3Xw822dn+MDbr2f77AzR8NkAkGqqNgftAX66vn038FfArzUWyMy/bdg+HRFPA1cCZyseWxOo3bTMnbRbT3ft573oS61VDYGrMvNMffvbwFXrFY6IVwOXAt+oeFxNoCqLsPjilrQxHUMgIj4PvKTFV7c3fsjMjIh2kyoSEVuBTwD7MvNcmzL7gf0Ac3NznaqmCVN1ERbv+KXedQyBzNzV7ruIeCoitmbmmfpF/uk25V4IfBa4PTOPr3Osw8BhgPn5+baBosnkIizS4FXtGD4C7Ktv7wM+01wgIi4F/hfw8cz8dMXjaYK5CIs0eFVD4C7gTRHxKLCr/pmImI+ID9fL3AL8FPDuiPha/b8bKh5XE+jA7p3MTE9dsM+XuKTNFdnmRZphm5+fz8XFxWFXQwO20dFBkmoi4sHMnO+2vG8Mq2/6cQG3c1caLENAfVFleKek4anaJyAB6w/vlDS6fBJQzxZOLHHnkYc5u1xbgP3yy6YvWIy9kcM7pdFmCKgnCyeWOHDvQ6yc+8cBBe0CABzeKY06m4PUk0NHT10QAI2i6bPDO6XRZwioJ+s17yQ4W6c0ZmwOUk+2zc60XbB9++wMXz74xgHXSFIVPgmoJwd272R6S3PDD0xPhU0/0hjySUA9WWveaR4ddMdbr7PpRxpDhoB65lu90uQwBArmPD2SDIECNb/sBU7zIJXKEChIq4t/o15W8ZI0GQyBQjRP8NaO0zxIZXGIaCFaTfDWitM8SGUxBArRzR2+0zxI5TEECtHpDv/yy6ad5kEqkCFQiFbr90Lt4v+hd9zAiV//GQNAKpAdw4VYu8D7XoCkRoZAQXzTV1Izm4MkqWCGgCQVzBCQpIIZApJUMENAkgpmCEhSwQwBSSqY7wmMMBd9kbTZDIER1Tz1s4u+SNoMhsCIWbv7X2ox66eLvkjqN0NghHSz8IuLvkjqJzuGR0g3C7+46IukfjIERkinu3wXfZHUb4bACFnvLn/77IyLvkjqO0NghLRa+GVmeooPveMGvnzwjQaApL6rFAIR8eKIuD8iHq3/efk6ZV8YEU9GxO9XOeYk23vjdj7w9uvZPjtD4N2/pM1XdXTQQeBYZt4VEQfrn3+tTdnfBL5U8XgTz4VfJA1S1eagPcDd9e27gb2tCkXETwJXAX9Z8XiSpD6qGgJXZeaZ+va3qV3oLxARW4APAr9a8ViSpD7r2BwUEZ8HXtLiq9sbP2RmRkS2KPc+4HOZ+WREdDrWfmA/wNzcXKeqjZX3L5zkTx94nKz/DV02vYX/+vZX2fQjaag6hkBm7mr3XUQ8FRFbM/NMRGwFnm5R7LXA6yPifcAPA5dGxPcy82CLYx0GDgPMz8+3CpSx9P6Fk/zJ8ccv2Pf8yjl++VNfA5wLSNLwVG0OOgLsq2/vAz7TXCAzfz4z5zJzB7UmoY+3CoBJ9skHnmi5/1zW3hKWpGGpGgJ3AW+KiEeBXfXPRMR8RHy4auUmxWq2f6hxLiBJw1RpiGhmPgvc3GL/IvDeFvs/BnysyjHH0VRE2yBwLiBJw+QbwwNw62uubrl/S+BcQJKGyhAYgN/aez3vummOxsFRl01v4XduucFOYUlDFblOe/Uwzc/P5+Li4rCrIUljJSIezMz5bsv7JCBJBXNlsT5yYXhJ48YQ6BMXhpc0jmwO6oOFE0v8yqceumhpyLWF4SVpVBkCFa09AbR7D8CXwSSNMkOgok6Lw/symKRRZghUtN6dvgvDSxp1hkBF7e70pyJcGlLSyDMEKmq3OPwHb/lnBoCkkecQ0Q1ofh/gZ39yO1/8P8/4foCksWMI9KjV+wD/88Elm34kjSWbg3rUajSQ7wNIGleGQI/ajQbyfQBJ48gQ6FG70UC+DyBpHBkCPWo3Gsj3ASSNIzuGe7TW+etsoZImgSGwAXtv3O5FX9JEsDlIkgrmk0AXXCxG0qQyBDpwsRhJk8zmoA58OUzSJDMEOvDlMEmTzBDowJfDJE0yQ6ADXw6TNMnsGO7Al8MkTTJDoAu+HCZpUtkcJEkFMwQkqWCGgCQVzBCQpIIZApJUMENAkgpmCEhSwSqFQES8OCLuj4hH639e3qbcXET8ZUR8PSIeiYgdVY4rSeqPqk8CB4FjmXkNcKz+uZWPA4cy8xXAq4GnKx5XktQHVUNgD3B3fftuYG9zgYi4FrgkM+8HyMzvZebzFY8rSeqDqiFwVWaeqW9/G7iqRZmXA2cj4r6IOBERhyJiqkU5ImJ/RCxGxOIzzzxTsWqSpE46zh0UEZ8HXtLiq9sbP2RmRkS2OcbrgRuBx4F7gHcDH2kumJmHgcMA8/PzrX6XJKmPOoZAZu5q911EPBURWzPzTERspXVb/5PA1zLzm/WfWQBuokUISJIGq2pz0BFgX317H/CZFmW+CsxGxJX1z28EHql4XElSH1QNgbuAN0XEo8Cu+mciYj4iPgyQmavArwLHIuIkEMAfVzyuJKkPKq0nkJnPAje32L8IvLfh8/3Aq6ocS5LUf74xLEkFMwQkqWCGgCQVzBCQpIIVu9D8woklDh09xemzy2ybneHA7p0uJi+pOEWGwMKJJQ7c+xAr52ovJS+dXebAvQ8BGASSilJkc9CdRx4+HwBrVs4ldx55eEg1kqThKDIEzi6v9LRfkiZVkSEgSaopMgQuv2y6p/2SNKmKDIE73nod01Nxwb7pqeCOt143pBpJ0nAUOTpobQSQQ0Qlla7IEIBaEHjRl1S6IpuDJEk1hoAkFcwQkKSCGQKSVLCiOoadNE6SLlRMCCycWOK2+06yvLIK1CaNu+2+k4CTxkkqVzHNQYeOnjofAGuWV1Y5dPTUkGokScNXTAicPrvc035JKkExIbBtdqan/ZJUgmJC4MDuncxMT12wb2Z6igO7dw6pRpI0fMV0DDtfkCRdrJgQAOcLkqRmxTQHSZIuZghIUsEMAUkqmCEgSQUzBCSpYIaAJBXMEJCkghkCklQwQ0CSCmYISFLBKoVARLw4Iu6PiEfrf17eptx/i4iHI+LrEfF7ERFVjitJ6o+qTwIHgWOZeQ1wrP75AhHxL4DXAa8CXgn8c+ANFY8rSeqDqiGwB7i7vn03sLdFmQR+CLgUeAEwDTxV8biSpD6oGgJXZeaZ+va3gauaC2TmV4AvAmfq/x3NzK9XPK4kqQ86TiUdEZ8HXtLiq9sbP2RmRkS2+PkfB14BvLS+6/6IeH1m/u8WZfcD+wHm5uY6116SVEnHEMjMXe2+i4inImJrZp6JiK3A0y2K/WvgeGZ+r/4zfwG8FrgoBDLzMHAYYH5+/qJAkST1V9XmoCPAvvr2PuAzLco8DrwhIi6JiGlqncI2B0nSCKgaAncBb4qIR4Fd9c9ExHxEfLhe5tPAN4CTwEPAQ5n55xWPK0nqg0rLS2bms8DNLfYvAu+tb68C/6HKcSRJm8M3hiWpYIaAJBXMEJCkghkCklQwQ0CSCmYISFLBDAFJKlil9wRG3cKJJQ4dPcXps8tsm53hwO6d7L1x+7CrJUkjY2JDYOHEErfdd5LllVUAls4uc9t9JwEMAkmqm9jmoENHT50PgDXLK6scOnpqSDWSpNEzsSFw+uxyT/slqUQTGwLbZmd62i9JJZrYEDiweycz01MX7JuZnuLA7p1DqpEkjZ6J7Rhe6/x1dJAktTexIQC1IPCiL0ntTWxzkCSpM0NAkgpmCEhSwQwBSSqYISBJBTMEJKlghoAkFcwQkKSCRWYOuw4tRcQzwN9t4EevAL7T5+qMk5LPv+RzB8+/5PNvPPcfy8wru/3BkQ2BjYqIxcycH3Y9hqXk8y/53MHzL/n8q5y7zUGSVDBDQJIKNokhcHjYFRiyks+/5HMHz7/k89/wuU9cn4AkqXuT+CQgSerS2IZARLw5Ik5FxGMRcbDF9y+IiHvq3z8QETsGX8vN08X5/3JEPBIRfx0RxyLix4ZRz83Q6dwbyv1sRGRETNSIkW7OPyJuqf/7PxwR/2PQddwsXfx/PxcRX4yIE/X/998yjHpuhoj4aEQ8HRF/0+b7iIjfq//d/HVE/ERXvzgzx+4/YAr4BvBPgUuBh4Brm8q8D/ij+vY7gXuGXe8Bn/+/BC6rb//ipJx/N+deL/cjwJeA48D8sOs94H/7a4ATwOX1z/9k2PUe4LkfBn6xvn0t8K1h17uP5/9TwE8Af9Pm+7cAfwEEcBPwQDe/d1yfBF4NPJaZ38zMfwD+DNjTVGYPcHd9+9PAzRERA6zjZup4/pn5xcx8vv7xOPDSAddxs3Tzbw/wm8BvA98fZOUGoJvz//fAH2TmdwEy8+kB13GzdHPuCbywvv0i4PQA67epMvNLwN+vU2QP8PGsOQ7MRsTWTr93XENgO/BEw+cn6/talsnMHwDPAT86kNptvm7Ov9F7qN0hTIKO515/DL46Mz87yIoNSDf/9i8HXh4RX46I4xHx5oHVbnN1c+53Au+KiCeBzwH/cTBVGwm9XheACV9jWBAR7wLmgTcMuy6DEBFbgN8B3j3kqgzTJdSahH6a2hPglyLi+sw8O9RaDcatwMcy84MR8VrgExHxysw8N+yKjapxfRJYAq5u+PzS+r6WZSLiEmqPhs8OpHabr5vzJyJ2AbcDb8vM/zegum22Tuf+I8Argb+KiG9Raxs9MkGdw9382z8JHMnMlcz8v8DfUguFcdfNub8H+BRAZn4F+CFq8+qUoKvrQrNxDYGvAtdExMsi4lJqHb9HmsocAfbVt38O+ELWe08mQMfzj4gbgf9OLQAmpU0YOpx7Zj6XmVdk5o7M3EGtP+Rtmbk4nOr2XTf/7y9QewogIq6g1jz0zUFWcpN0c+6PAzcDRMQrqIXAMwOt5fAcAX6hPkroJuC5zDzT6YfGsjkoM38QEb8EHKU2YuCjmflwRPwGsJiZR4CPUHsUfIxaZ8o7h1fj/ury/A8BPwzcW+8Pfzwz3za0SvdJl+c+sbo8/6PAz0TEI8AqcCAzx/4puMtz/xXgjyPiP1HrJH73pNz8RcQnqYX7FfU+jzuAaYDM/CNqfSBvAR4Dngf+XVe/d0L+fiRJGzCuzUGSpD4wBCSpYIaAJBXMEJCkghkCklQwQ0CSCmYISFLBDAFJKtj/B71mXzOBRPywAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"\n",
"import matplotlib.pyplot as plt\n",
"plt.scatter(x,y)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Loading