Script Execution: run.sh
- Train the Question-Event Matching Model:
python q2e_model.py
-
Save embeddings corresponding to each event:
python bert_embedding.py -
Evaluate the results of the Question-Event Matching Model:
python Q2E.py -
Filter original logs based on events matched with each question and save filtered QA results:
python QE2Log_model.py(model-based) -
Train QANet to extract answer positions from events:
cd QANet-pytorch-/, thenpython main.py --mode dataandpython main.py --mode train -
Evaluate QANet results and save positions of answers for each question in log events:
cd QANet-pytorch-/, thenpython main.py --mode test -
Extract answers to questions based on results from steps 4 and 5
-
Determine computations to be performed based on questions
运行脚本: run.sh
- 训练问题-事件匹配模型: python q2e_model.py
-
保存每个事件对应的embedding: python bert_embedding.py
-
评估问题-事件匹配模型的的结果: python Q2E.py
-
根据每个问题匹配的事件, 过滤原始logs, 保存过滤后的QA结果 python QE2Log_model.py(model-based)
-
训练QANet提取事件中答案的位置: cd QANet-pytorch-/ python main.py --mode data python main.py --mode train
-
评估QANet的结果,并保存每个问题对应答案在日志事件中的位置: cd QANet-pytorch-/ python main.py --mode test
-
根据4、5的结果提取问题的答案
-
根据问题判断应该进行的计算
