Skip to content

wyf23187/Adaptive_Distractions

Repository files navigation

Breaking Focus: Contextual Distraction Curse in Large Language Models

GitHub Repo stars ArXiv PDF

Introduction

We present a systematic framework for studying Contextual Distraction Vulnerability (CDV) - a critical weakness where semantically coherent contextual additions degrade LLM performance. Our toolkit enables:

  1. Automated CDV Example Generation
    Tree-based search with error-guided perturbation strategies to create valid distracting contexts

  2. Quantitative Vulnerability Assessment
    Benchmarking framework for measuring model robustness degradation

  3. Mitigation Strategy Analysis
    Comparative evaluation of prompt engineering vs. fine-tuning approaches

CDV Pipeline

Installation

1. Clone Repository

git clone https://github.com/wyf23187/LLM_CDV.git
cd LLM_CDV

2. Install Dependencies

conda create -n cdv python=3.9
conda activate cdv
pip install -r requirements.txt

Usage

Step 1: Generate CDV Examples

python run.py \
  --input-file data/MMLU.json \
  --model gpt-4 \
  --concurrency 10 \ 
  --max-try 15 \          
  --max-good 3 \           
  --simulate-times 5      

Step 2: Evaluate Model Robustness

python eval.py \
  --datasets MMLU TruthfulQA \
  --target_model gpt-4o-mini \
  --eval_models gpt-4o llama-3-8B \
  --modes original enhanced

Step 3: Analyze Results

python visualization.py \
  --datasets MMLU TruthfulQA \
  --target_model gpt-4o-mini \
  --eval_models gpt-4o llama-3-8B \
  --evaluation_dir evaluation \
  --output_dir visualizations

Configuration

Create .env in project root:

OPENAI_API_KEY=your_openai_api_key

HTTP_PROXY=your_http_proxy
HTTPS_PROXY=your_https_proxy

DEEPINFRA_BASE_URL=https://api.deepinfra.com/v1/openai
DEEPINFRA_API_KEY=your_deepinfra_api_key

ANTHROPIC_API_KEY=your_anthropic_api_key

License

Apache License 2.0 - See LICENSE

Citation

If you use our work, please cite us:

@article{huang2025contextualdistraction,
    title={Breaking Focus: Contextual Distraction Curse in Large Language Models},
    author={Huang, Yue and Wang, Yanbo and Xu, Zixiang and Gao, Chujie and Wu, Siyuan and Ye, Jiayi and Chen, Xiuying and Chen, Pin-Yu and Zhang, Xiangliang},
    journal={arXiv preprint arXiv:2502.01609},
    year={2025},
    url={https://arxiv.org/abs/2502.01609}
}

About

NeurIPS 2025 Poster

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages