Skip to content

wds-seu/ChiRelPrompt

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

53 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ChiRelPrompt: Extracting Chinese Multi-relations from Language Models with Prompt

Requirements

conda env: /conda_environment.yaml

pip package: /pip_packages.txt

Datasets

CTLD-h: /examples/training/hypernymy/datasets/

CTLD-a: /examples/training/attribute/datasets/

CTLD-m: /examples/training/multirelation/datasets/

CTLD-f: /examples/training/datasets/

Statistical information of datasets is below:

Datasets Train Dev Test
CTLD-h 18,847 6,302 6,292
CTLD-a 40,412 13,449 13,451
CTLD-m 19,100 6,120 6,515
CTLD-f 23,846 6,115 -

Main File

Multi-relation Detection: /examples/training/multirelation/training_multi_relation_benchmark.py

Hypernymy Detection: /examples/training/hypernymy/training_hypernymy_benchmark.py

Concept Attribute Detection: /examples/training/attribute/training_attribute_benchmark.py

Run

python training_*_benchmark.py

Results

CTLD-m:

Model Macro_p Macro_R Macro_F1
D-Tensor 76.52 73.34 74.89
SphereRE 83.59 81.08 82.31
CCE 78.97 77.67 78.31
TraConcept 82.23 81.56 81.90
DPRE 83.44 82.39 82.91
CPRE 83.59 82.42 83.17
IPRE 83.42 82.99 83.20

CTLD-h:

Model Precision Recall F1
D-Tensor 74.88 61.56 67.57
SphereRE 87.85 85.16 86.48
CEE 83.34 81.51 82.41
TraConcept 87.88 89.79 88.82
DPRE 88.41 85.97 87.17
CPRE 89.04 87.40 88.21
IPRE 89.01 88.72 88.86

CTLD-a:

Model Precision Recall F1
D-Tensor 70.15 60.18 64.78
SphereRE 75.37 76.39 75.87
CEE 70.15 68.29 69.20
TraConcept 77.66 81.02 79.31
DPRE 80.60 79.37 79.98
CPRE 78.27 80.49 79.36
IPRE 79.67 82.14 80.88

D-Tensor: Dual tensor model for detecting asymmetric lexicosemantic relations. EMNLP 2017

Spherere: Distinguishing lexical relations with hyperspherical relation embeddings. ACL 2019

CCE: Learning Conceptual-Contextual Embeddings for Medical Text. AAAI 2020

TraConcept: TraConcept: Constructing a Concept Framework from Chinese Traffic Legal Texts. CCKS 2022

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages