conda env: /conda_environment.yaml
pip package: /pip_packages.txt
CTLD-h: /examples/training/hypernymy/datasets/
CTLD-a: /examples/training/attribute/datasets/
CTLD-m: /examples/training/multirelation/datasets/
CTLD-f: /examples/training/datasets/
Statistical information of datasets is below:
| Datasets | Train | Dev | Test |
|---|---|---|---|
| CTLD-h | 18,847 | 6,302 | 6,292 |
| CTLD-a | 40,412 | 13,449 | 13,451 |
| CTLD-m | 19,100 | 6,120 | 6,515 |
| CTLD-f | 23,846 | 6,115 | - |
Multi-relation Detection: /examples/training/multirelation/training_multi_relation_benchmark.py
Hypernymy Detection: /examples/training/hypernymy/training_hypernymy_benchmark.py
Concept Attribute Detection: /examples/training/attribute/training_attribute_benchmark.py
python training_*_benchmark.py
CTLD-m:
| Model | Macro_p | Macro_R | Macro_F1 |
|---|---|---|---|
| D-Tensor | 76.52 | 73.34 | 74.89 |
| SphereRE | 83.59 | 81.08 | 82.31 |
| CCE | 78.97 | 77.67 | 78.31 |
| TraConcept | 82.23 | 81.56 | 81.90 |
| DPRE | 83.44 | 82.39 | 82.91 |
| CPRE | 83.59 | 82.42 | 83.17 |
| IPRE | 83.42 | 82.99 | 83.20 |
CTLD-h:
| Model | Precision | Recall | F1 |
|---|---|---|---|
| D-Tensor | 74.88 | 61.56 | 67.57 |
| SphereRE | 87.85 | 85.16 | 86.48 |
| CEE | 83.34 | 81.51 | 82.41 |
| TraConcept | 87.88 | 89.79 | 88.82 |
| DPRE | 88.41 | 85.97 | 87.17 |
| CPRE | 89.04 | 87.40 | 88.21 |
| IPRE | 89.01 | 88.72 | 88.86 |
CTLD-a:
| Model | Precision | Recall | F1 |
|---|---|---|---|
| D-Tensor | 70.15 | 60.18 | 64.78 |
| SphereRE | 75.37 | 76.39 | 75.87 |
| CEE | 70.15 | 68.29 | 69.20 |
| TraConcept | 77.66 | 81.02 | 79.31 |
| DPRE | 80.60 | 79.37 | 79.98 |
| CPRE | 78.27 | 80.49 | 79.36 |
| IPRE | 79.67 | 82.14 | 80.88 |
D-Tensor: Dual tensor model for detecting asymmetric lexicosemantic relations. EMNLP 2017
Spherere: Distinguishing lexical relations with hyperspherical relation embeddings. ACL 2019
CCE: Learning Conceptual-Contextual Embeddings for Medical Text. AAAI 2020
TraConcept: TraConcept: Constructing a Concept Framework from Chinese Traffic Legal Texts. CCKS 2022