An MCP (Model Context Protocol) server for managing PostgreSQL clusters using the CloudNativePG operator in Kubernetes.
This MCP server enables LLMs to interact with PostgreSQL clusters managed by the CloudNativePG operator. It provides high-level workflow tools for:
- 📋 Listing and discovering PostgreSQL clusters
- 🔍 Getting detailed cluster status and health information
- 🚀 Creating new PostgreSQL clusters with best practices
- 📈 Scaling clusters up or down
- 🗑️ Deleting PostgreSQL clusters with safety confirmations
- 👥 Managing PostgreSQL roles/users (list, create, update, delete)
- 🗄️ Managing PostgreSQL databases (list, create, delete)
- 🔄 Managing backups and restores (TODO)
- 📊 Monitoring cluster health and logs (TODO)
-
Kubernetes Cluster with CloudNativePG operator installed:
kubectl apply -f https://raw.githubusercontent.com/cloudnative-pg/cloudnative-pg/release-1.22/releases/cnpg-1.22.0.yaml
-
Python 3.11+ installed
-
Kubernetes config file (kubeconfig) with cluster access at
~/.kube/configor set viaKUBECONFIGenvironment variable- The server uses the Kubernetes Python client library (no kubectl CLI required)
-
Appropriate RBAC permissions for the service account (see RBAC Setup below)
The easiest way to install and configure this MCP server is through Smithery.ai:
npx @smithery/cli install cnpg-mcp-server --client claudeThis automatically:
- Installs the required Python dependencies
- Configures the MCP server in your Claude Desktop config
- Sets up the appropriate environment variables
-
Clone this repository:
git clone https://github.com/helxplatform/cnpg-mcp.git cd cnpg-mcp -
Install Python dependencies:
pip install -r requirements.txt
-
Verify Kubernetes connectivity (optional):
python -c "from kubernetes import config; config.load_kube_config(); print('✅ Kubernetes config loaded successfully')"Or if you have kubectl installed:
kubectl get nodes
-
Configure for Claude Desktop (optional): Add to your Claude Desktop config (
~/Library/Application Support/Claude/claude_desktop_config.jsonon macOS):{ "mcpServers": { "cnpg": { "command": "python", "args": ["/absolute/path/to/src/cnpg_mcp_server.py"], "env": { "KUBECONFIG": "/path/to/.kube/config" } } } }
Install directly from source:
pip install git+https://github.com/helxplatform/cnpg-mcp.gitThen run:
cnpg-mcp-serverThe MCP server needs permissions to interact with CloudNativePG resources. The CloudNativePG helm chart automatically creates ClusterRoles (cnpg-cloudnative-pg-edit, cnpg-cloudnative-pg-view), so you only need to create a ServiceAccount and bind it to these existing roles:
# Apply the RBAC configuration (ServiceAccount + RoleBindings)
kubectl apply -f rbac.yamlThis creates:
- A
cnpg-mcp-serverServiceAccount - ClusterRoleBinding to
cnpg-cloudnative-pg-edit(for managing clusters) - ClusterRoleBinding to
view(for reading pods, events, logs)
Verify the setup:
# Check the service account was created
kubectl get serviceaccount cnpg-mcp-server
# Verify permissions
kubectl auth can-i get clusters.postgresql.cnpg.io --as=system:serviceaccount:default:cnpg-mcp-server
kubectl auth can-i create clusters.postgresql.cnpg.io --as=system:serviceaccount:default:cnpg-mcp-serverFor read-only access: Change cnpg-cloudnative-pg-edit to cnpg-cloudnative-pg-view in rbac.yaml
The server supports two transport modes (currently only stdio is implemented):
Communication over stdin/stdout. Best for local development and Claude Desktop integration.
# Run with default stdio transport
python src/cnpg_mcp_server.py
# Or explicitly specify stdio
python src/cnpg_mcp_server.py --transport stdioCharacteristics:
- ✅ Simple setup, no network configuration
- ✅ Automatic process management
- ✅ Secure (no network exposure)
- ❌ Single client per server instance
- ❌ Client and server must be on same machine
Use cases: Claude Desktop, local CLI tools, personal development
HTTP server with Server-Sent Events for remote access. Best for team environments and production deployments.
# Will be available in future version
python src/cnpg_mcp_server.py --transport http --host 0.0.0.0 --port 3000When implemented, will provide:
- ✅ Multiple clients can connect
- ✅ Remote access capability
- ✅ Independent server lifecycle
- ✅ Better for team/production use
⚠️ Requires authentication/TLS setup
Use cases: Team-shared server, production deployments, Kubernetes services
The codebase is structured to easily add HTTP transport when needed. See the run_http_transport() function for implementation guidelines.
The server uses your kubeconfig for authentication:
- Local development: Uses
~/.kube/config - In-cluster: Automatically uses service account tokens
You can also set the KUBECONFIG environment variable:
export KUBECONFIG=/path/to/your/kubeconfigNamespace Handling:
- Most tools accept an optional
namespaceparameter - If not specified, the server automatically uses the current namespace from your Kubernetes context
- This makes it easier to work with a default namespace without specifying it every time
- You can check your current namespace with:
kubectl config view --minify -o jsonpath='{..namespace}'
# View all available options
python src/cnpg_mcp_server.py --help
# Run with stdio transport (default)
python src/cnpg_mcp_server.py
# Explicitly specify transport mode
python src/cnpg_mcp_server.py --transport stdio
# Run with HTTP transport (when implemented)
python src/cnpg_mcp_server.py --transport http --host 0.0.0.0 --port 3000python src/cnpg_mcp_server.pyNote: The server runs as a long-running process waiting for MCP requests. In stdio mode, it won't exit until interrupted. This is expected behavior.
Add to your Claude Desktop configuration (~/Library/Application Support/Claude/claude_desktop_config.json on macOS):
{
"mcpServers": {
"cloudnative-pg": {
"command": "python",
"args": ["/path/to/cnpg_mcp_server.py"],
"env": {
"KUBECONFIG": "/path/to/.kube/config"
}
}
}
}For production deployments, you can containerize the server:
FROM python:3.11-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY src/cnpg_mcp_server.py .
CMD ["python", "src/cnpg_mcp_server.py"]Deploy as a Kubernetes service that can be accessed by your LLM application.
Enhanced Output Formats: 4 tools support optional JSON format for programmatic consumption:
list_postgres_clusters(format="json")- Structured cluster listget_cluster_status(format="json")- Structured cluster detailslist_postgres_roles(format="json")- Structured role listlist_postgres_databases(format="json")- Structured database list
All other tools return human-readable text optimized for LLM consumption.
List all PostgreSQL clusters in the Kubernetes cluster.
Parameters:
namespace(optional): Filter by namespace. If not provided, uses the current namespace from your Kubernetes contextdetail_level: "concise" (default) or "detailed"format: "text" (default) or "json" - Output format for programmatic consumption
Example:
List all PostgreSQL clusters in production namespace
JSON Output:
When format="json", returns structured data like:
{
"clusters": [...],
"count": 3,
"scope": "namespace 'production'"
}Get detailed status for a specific cluster.
Parameters:
name(required): Name of the clusternamespace(optional): Namespace of the cluster. If not specified, uses the current namespace from your Kubernetes contextdetail_level: "concise" (default) or "detailed"format: "text" (default) or "json" - Output format for programmatic consumption
Example:
Get detailed status for the main-db cluster in production namespace
Note: Supports JSON format for structured output.
Create a new PostgreSQL cluster with high availability.
Parameters:
name(required): Cluster nameinstances(default: 3): Number of PostgreSQL instancesstorage_size(default: "10Gi"): Storage per instancepostgres_version(default: "16"): PostgreSQL versionstorage_class(optional): Kubernetes storage classwait(default: False): Wait for the cluster to become operational before returningtimeout(optional): Maximum time in seconds to wait (30-600 seconds). Defaults to 60 seconds per instancenamespace(optional): Target namespace. If not specified, uses the current namespace from your Kubernetes contextdry_run(default: False): Preview the cluster configuration without creating it
Example:
Create a new PostgreSQL cluster named 'app-db' in the production namespace with 5 instances and 100Gi storage
Scale a cluster by changing the number of instances.
Parameters:
name(required): Cluster nameinstances(required): New number of instances (1-10)namespace(optional): Namespace of the cluster. If not specified, uses the current namespace from your Kubernetes context
Example:
Scale the app-db cluster in production to 5 instances
Delete a PostgreSQL cluster and its associated resources.
Automatically cleans up:
- The cluster resource itself
- All associated role password secrets (using label selector
cnpg.io/cluster={name})
Parameters:
name(required): Name of the cluster to deleteconfirm_deletion(default: False): Must be explicitly set to true to confirm deletionnamespace(optional): Namespace where the cluster exists. If not specified, uses the current namespace from your Kubernetes context
Example:
Delete the old-test-cluster with confirmation
Warning: This is a DESTRUCTIVE operation that permanently removes the cluster and all its data. The tool will report how many secrets were cleaned up.
List all PostgreSQL roles/users managed in a cluster.
Parameters:
cluster_name(required): Name of the PostgreSQL clusternamespace(optional): Namespace where the cluster exists. If not specified, uses the current namespace from your Kubernetes contextformat: "text" (default) or "json" - Output format for programmatic consumption
Example:
List all roles in the main-db cluster
Note: Supports JSON format for structured output with role attributes.
Create a new PostgreSQL role/user in a cluster. Automatically generates a secure password and stores it in a Kubernetes secret.
Parameters:
cluster_name(required): Name of the PostgreSQL clusterrole_name(required): Name of the role to createlogin(default: true): Allow role to log insuperuser(default: false): Grant superuser privilegesinherit(default: true): Inherit privileges from parent rolescreatedb(default: false): Allow creating databasescreaterole(default: false): Allow creating rolesreplication(default: false): Allow streaming replicationnamespace(optional): Namespace where the cluster exists
Example:
Create a new role 'app_user' in the main-db cluster with login and createdb privileges
Update attributes of an existing PostgreSQL role/user.
Parameters:
cluster_name(required): Name of the PostgreSQL clusterrole_name(required): Name of the role to updatelogin,superuser,inherit,createdb,createrole,replication(all optional): Attributes to updatepassword(optional): New password for the rolenamespace(optional): Namespace where the cluster exists
Example:
Grant createdb privilege to app_user in the main-db cluster
Delete a PostgreSQL role/user from a cluster. Also deletes the associated Kubernetes secret.
Parameters:
cluster_name(required): Name of the PostgreSQL clusterrole_name(required): Name of the role to deletenamespace(optional): Namespace where the cluster exists
Example:
Delete the old_user role from the main-db cluster
List all PostgreSQL databases managed by Database CRDs for a cluster.
Parameters:
cluster_name(required): Name of the PostgreSQL clusternamespace(optional): Namespace where the cluster existsformat: "text" (default) or "json" - Output format for programmatic consumption
Example:
List all databases in the main-db cluster
Note: Supports JSON format for structured output with database details.
Create a new PostgreSQL database using CloudNativePG's Database CRD.
Parameters:
cluster_name(required): Name of the PostgreSQL clusterdatabase_name(required): Name of the database to createowner(required): Name of the role that will own the databasereclaim_policy(default: "retain"): Policy for database deletion ("retain" or "delete")namespace(optional): Namespace where the cluster exists
Example:
Create a new database 'app_data' owned by 'app_user' in the main-db cluster
Delete a PostgreSQL database by removing its Database CRD.
Parameters:
cluster_name(required): Name of the PostgreSQL clusterdatabase_name(required): Name of the database to deletenamespace(optional): Namespace where the cluster exists
Example:
Delete the old_data database from the main-db cluster
Note: Whether the database is actually dropped from PostgreSQL depends on the databaseReclaimPolicy set when the database was created.
This MCP server follows agent-centric design principles:
- Workflow-based tools: Each tool completes a meaningful workflow, not just a single API call
- Optimized for context: Responses are concise by default, with detailed mode available
- Actionable errors: Error messages suggest next steps
- Natural naming: Tool names reflect user intent, not just API endpoints
The server is designed with transport-agnostic core logic, making it easy to add new transport modes without rewriting tool implementations:
┌─────────────────────────────────────────────┐
│ MCP Tool Layer │
│ (list_clusters, create_cluster, etc.) │
│ ↓ │
│ Core business logic is transport-agnostic │
└─────────────────────────────────────────────┘
↓
┌─────────────────────────────────────────────┐
│ Transport Layer │
│ ┌──────────────┐ ┌─────────────┐ │
│ │ stdio │ │ HTTP/SSE │ │
│ │ (current) │ │ (future) │ │
│ └──────────────┘ └─────────────┘ │
└─────────────────────────────────────────────┘
Why this matters:
- All tool functions (decorated with
@mcp.tool()) work with any transport - Adding HTTP transport only requires implementing
run_http_transport() - No changes needed to business logic when switching transports
- Can run both transports simultaneously if needed
To add HTTP/SSE transport later:
- Uncomment HTTP dependencies in
requirements.txt - Install:
pip install mcp[sse] starlette uvicorn - Implement the
run_http_transport()function (skeleton already provided) - Add authentication/authorization middleware
- Configure TLS for production
- Kubernetes Client: Uses
kubernetesPython client for API access - CloudNativePG CRDs: Interacts with Custom Resource Definitions:
Cluster: Primary resource for PostgreSQL cluster managementDatabase: Declarative database creation and management (CNPG v1.23+)
- Declarative Role Management: Manages PostgreSQL roles through the Cluster CRD's
.spec.managed.rolesfield - Secret Management: Automatically creates and manages Kubernetes secrets for role passwords
- Async operations: All I/O is async for better performance
- Lazy initialization: Kubernetes clients are initialized on first use, allowing graceful startup
- Error handling: Comprehensive error formatting with suggestions
To add a new tool:
- Create a Pydantic model for input validation
- Implement the tool function with
@mcp.tool()decorator - Add comprehensive docstring following the format in existing tools
- Implement error handling with actionable messages
- Test thoroughly
Example skeleton:
class MyToolInput(BaseModel):
"""Input for my_tool."""
param1: str = Field(..., description="Description with examples")
@mcp.tool()
async def my_tool(param1: str) -> str:
"""
Tool description.
Detailed explanation of what this tool does and when to use it.
Args:
param1: Parameter description with usage guidance
Returns:
Description of return value format
Examples:
- Example usage 1
- Example usage 2
Error Handling:
- Common error scenarios and how to resolve them
"""
try:
# Implementation
result = await some_async_operation(param1)
return format_response(result)
except Exception as e:
return format_error_message(e, "context description")Run syntax check:
python -m py_compile src/cnpg_mcp_server.pyTest with a real Kubernetes cluster:
# In one terminal (use tmux to keep it running)
python src/cnpg_mcp_server.py
# In another terminal, test with MCP client or Claude Desktop- Delete cluster tool with safety confirmations
- PostgreSQL role/user management (list, create, update, delete)
- PostgreSQL database management (list, create, delete)
- Dry-run mode for cluster creation
- Wait for cluster readiness with configurable timeout
- Automatic namespace inference from Kubernetes context
- Lazy Kubernetes client initialization
- Backup management (list, create, restore)
- Log retrieval from pods
- SQL query execution (with safety guardrails)
- Connection information retrieval (automatic secret decoding)
- Monitoring and metrics integration
- Certificate and secret management
- Cluster configuration updates
- Pooler management
Ensure your service account has the necessary RBAC permissions. Check:
kubectl auth can-i get clusters.postgresql.cnpg.io --as=system:serviceaccount:default:cnpg-mcp-serverVerify kubectl connectivity:
kubectl cluster-info
kubectl get nodesInstall dependencies:
pip install -r requirements.txtThis is expected behavior - the server waits for MCP requests over stdio. Run in background or use process manager.
- RBAC: Apply principle of least privilege - only grant necessary permissions
- Use
cnpg-cloudnative-pg-viewfor read-only access - Use
cnpg-cloudnative-pg-editfor cluster management - Grant additional permissions for secrets if using role management:
listsecrets with label selector (for cleanup during cluster deletion)createanddeletesecrets (for role management)
- Use
- Secrets: Never log or expose database credentials
- Role passwords are automatically generated and stored in Kubernetes secrets
- Secrets are labeled with cluster and role information for easy management
- Secrets are named
cnpg-{cluster}-user-{role}to avoid conflicts - Automatic cleanup: Secrets are automatically deleted when their cluster is deleted
- Input validation: All inputs are validated with Pydantic models
- Namespace isolation: Consider restricting to specific namespaces
- Audit logging: Enable Kubernetes audit logs for compliance
- Destructive operations: Cluster and database deletion require explicit confirmation
- Role privileges: Be cautious when granting superuser or replication privileges
- Database reclaim policy: Choose "retain" for production databases to prevent accidental data loss
[Your License Here]
Contributions are welcome! Please:
- Follow the existing code style
- Add comprehensive docstrings
- Include error handling
- Test with real Kubernetes clusters
- Update README with new features