Paper: Leveraging Multi-Head Factorized Attentive Reconstructor and Gradient Reversal for Random Prosody Anonymization - Voice Privacy Challenge
Download Password:
getdata
Run the following script to download the required data and pretrained models:
bash 01_download_data_model.shThis section outlines training commands for various attack models targeting voice anonymization systems. The models are trained using different architectures and loss functions, evaluated on both original and anonymized speech.
CUDA_VISIBLE_DEVICES=0 taskset -c 11-18 nice -n 10 python train.py \
--model_version T12_exp2 \
--wav_scp_anon VoiceAnonymous/Attacker/resource/filelists/wav.scp_T12 \
--wav_scp_original VoiceAnonymous/Attacker/resource/filelists/wav.scp_original \
--save_dir VoiceAnonymous/Attacker/resource/outdir/T12_exp2 \
--epochs 30 \
--loss_type CosineSimilarityLossCUDA_VISIBLE_DEVICES=0 taskset -c 0-10 nice -n 10 python train.py \
--model_version T12_exp3 \
--wav_scp_anon VoiceAnonymous/Attacker/resource/filelists/wav.scp_T12 \
--wav_scp_original VoiceAnonymous/Attacker/resource/filelists/wav.scp_original \
--save_dir VoiceAnonymous/Attacker/resource/outdir/T12_exp3 \
--epochs 30 \
--loss_type CosineSimilarityLossCUDA_VISIBLE_DEVICES=0 taskset -c 11-18 nice -n 10 python train_contrastive.py \
--model_version T12_exp4 \
--wav_scp_anon VoiceAnonymous/Attacker/resource/filelists/wav.scp_T12 \
--wav_scp_original VoiceAnonymous/Attacker/resource/filelists/wav.scp_original \
--save_dir VoiceAnonymous/Attacker/resource/outdir/T12_exp4_NoAAM \
--epochs 30 \
--loss_type CosineSimilarityLossCUDA_VISIBLE_DEVICES=0 taskset -c 0-10 nice -n 10 python train_contrastive.py \
--model_version T12_exp4 \
--wav_scp_anon VoiceAnonymous/Attacker/resource/filelists/wav.scp_T12 \
--wav_scp_original VoiceAnonymous/Attacker/resource/filelists/wav.scp_original \
--save_dir VoiceAnonymous/Attacker/resource/outdir/T12_exp4 \
--epochs 30 \
--loss_type CosineSimilarityLossAAMCUDA_VISIBLE_DEVICES=0 taskset -c 11-20 nice -n 10 python train_contrastive_prosody.py \
--model_version T12_exp5 \
--wav_scp_anon VoiceAnonymous/Attacker/resource/filelists/wav.scp_T12 \
--wav_scp_original VoiceAnonymous/Attacker/resource/filelists/wav.scp_original \
--save_dir VoiceAnonymous/Attacker/resource/outdir/T12_exp5 \
--epochs 30 \
--loss_type CosineSimilarityLossAAM \
--checkpoint VoiceAnonymous/Attacker/resource/outdir/T12_exp5/audio_model_2.pthCUDA_VISIBLE_DEVICES=0 taskset -c 0-10 nice -n 10 python train_encodec.py \
--model_version B4_exp1 \
--wav_scp_anon VoiceAnonymous/Attacker/resource/filelists/wav.scp_B4 \
--wav_scp_original VoiceAnonymous/Attacker/resource/filelists/wav.scp_original \
--save_dir VoiceAnonymous/Attacker/resource/outdir/B4_exp1 \
--epochs 30 \
--loss_type MSEpython inference.py --config configs/eval_pre_attacker.yaml --overwrite "{\"anon_data_suffix\": \"_B3\"}" --force_compute Truepython run_evaluation.py --config configs/eval_post_attacker.yaml --overwrite "{\"anon_data_suffix\": \"_B3\"}" --force_compute Truepython inference.py --config configs/eval_pre_attacker.yaml --overwrite "{\"anon_data_suffix\": \"_B3\"}"CUDA_VISIBLE_DEVICES=1 python inference.py --config configs/eval_speechworld_B3.yaml --overwrite "{\"anon_data_suffix\": \"_B3\"}" --force_compute TrueCUDA_VISIBLE_DEVICES=0 taskset -c 0-10 nice -n 10 python inference.py --config configs/eval_speechworld_B4.yaml --overwrite "{\"anon_data_suffix\": \"_B4\"}" --force_compute TrueCUDA_VISIBLE_DEVICES=0 taskset -c 10-19 nice -n 10 python inference.py --config configs/eval_speechworld_T12-5.yaml --overwrite "{\"anon_data_suffix\": \"_T12-5\"}" --force_compute True