A world model training framework upon Chrono
This repository provides a comprehensive framework for world model training, video tokenization, and robotics simulation, integrating state-of-the-art generative models and physical simulation environments.

-
1xgpt/
Implementation of GENIE (spatio-temporal transformer and MaskGIT sampler), world model compression challenge scripts, and utilities.train.py,visualize.py,test_attention.py: Model training, visualization, and testing.data/: Dataset scripts and documentation.genie/: GENIE model code.magvit2/: MAGVIT2 encoder/decoder utilities.
-
test-scripts/vid-model/
Video model scripts, Cosmos-Tokenizer integration, and pre-trained checkpoints.Cosmos-Tokenizer/: NVIDIA Cosmos Tokenizer code and documentation.pretrained_ckpts/: Pre-trained Cosmos Tokenizer models.1xgpt_cosmos_vid_endecoder.ipynb: Example notebook for video encoding/decoding.
-
PyChronobotics-main/
Robotics simulation and control using PyChrono.experiment/: Example scripts for robot control and simulation.models/: Robot models (e.g., Jackal, robot arm).data/: 3D assets and robot assembly files.util/: Utilities for kinematics and asset import.
- Python 3.10+
- PyTorch
- PyChrono
- ffmpeg (for video processing)
- Additional dependencies listed in
requirements.txtfiles.
-
Install dependencies and download data:
cd 1xgpt ./build.sh source venv/bin/activate
-
Install Cosmos-Tokenizer (Linux recommended):
git clone https://github.com/NVIDIA/Cosmos-Tokenizer.git cd Cosmos-Tokenizer pip3 install -r requirements.txt apt-get install -y ffmpeg -
(Optional) Build Docker image for Cosmos-Tokenizer:
docker build -t cosmos-tokenizer -f Dockerfile . docker run --gpus all -it --rm -v /home/${USER}:/home/${USER} \ --workdir ${PWD} cosmos-tokenizer /bin/bash
python train.py --genie_config genie/configs/magvit_n32_h8_d256.json --output_dir data/genie_model --max_eval_steps 10python genie/generate.py --checkpoint_dir data/genie_model/final_checkpt
python visualize.py --token_dir data/genie_generatedpython genie/evaluate.py --checkpoint_dir data/genie_model/final_checkptSee test-scripts/vid-model/Cosmos-Tokenizer/README.md for details and API usage.
- 1X World Model Compression Challenge Dataset
See 1xgpt/data/README.md for dataset details, structure, and usage scripts.
If you use this repository, please cite the relevant papers and repositories as described in 1xgpt/README.md and test-scripts/vid-model/Cosmos-Tokenizer/README.md.
- Code: Apache 2.0
- Cosmos-Tokenizer Models: NVIDIA Open Model License
For more details, see individual module READMEs and documentation.
