Skip to content

uwsbel/ChronoDreamer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 

Repository files navigation

A world model training framework upon Chrono

ChronoDreamer World Model & Robotics Framework

This repository provides a comprehensive framework for world model training, video tokenization, and robotics simulation, integrating state-of-the-art generative models and physical simulation environments. media_images_vis_train_0_217000_206c6109eb0c8f29c237

generated_offset0(1)

Repository Structure

  • 1xgpt/
    Implementation of GENIE (spatio-temporal transformer and MaskGIT sampler), world model compression challenge scripts, and utilities.

    • train.py, visualize.py, test_attention.py: Model training, visualization, and testing.
    • data/: Dataset scripts and documentation.
    • genie/: GENIE model code.
    • magvit2/: MAGVIT2 encoder/decoder utilities.
  • test-scripts/vid-model/
    Video model scripts, Cosmos-Tokenizer integration, and pre-trained checkpoints.

    • Cosmos-Tokenizer/: NVIDIA Cosmos Tokenizer code and documentation.
    • pretrained_ckpts/: Pre-trained Cosmos Tokenizer models.
    • 1xgpt_cosmos_vid_endecoder.ipynb: Example notebook for video encoding/decoding.
  • PyChronobotics-main/
    Robotics simulation and control using PyChrono.

    • experiment/: Example scripts for robot control and simulation.
    • models/: Robot models (e.g., Jackal, robot arm).
    • data/: 3D assets and robot assembly files.
    • util/: Utilities for kinematics and asset import.

Getting Started

Requirements

  • Python 3.10+
  • PyTorch
  • PyChrono
  • ffmpeg (for video processing)
  • Additional dependencies listed in requirements.txt files.

Installation

  1. Install dependencies and download data:

    cd 1xgpt
    ./build.sh
    source venv/bin/activate
  2. Install Cosmos-Tokenizer (Linux recommended):

    git clone https://github.com/NVIDIA/Cosmos-Tokenizer.git
    cd Cosmos-Tokenizer
    pip3 install -r requirements.txt
    apt-get install -y ffmpeg
  3. (Optional) Build Docker image for Cosmos-Tokenizer:

    docker build -t cosmos-tokenizer -f Dockerfile .
    docker run --gpus all -it --rm -v /home/${USER}:/home/${USER} \
        --workdir ${PWD} cosmos-tokenizer /bin/bash

Usage

Train GENIE Model

python train.py --genie_config genie/configs/magvit_n32_h8_d256.json --output_dir data/genie_model --max_eval_steps 10

Generate and Visualize

python genie/generate.py --checkpoint_dir data/genie_model/final_checkpt
python visualize.py --token_dir data/genie_generated

Evaluate

python genie/evaluate.py --checkpoint_dir data/genie_model/final_checkpt

Video Tokenization (Cosmos-Tokenizer)

See test-scripts/vid-model/Cosmos-Tokenizer/README.md for details and API usage.

Dataset

  • 1X World Model Compression Challenge Dataset
    See 1xgpt/data/README.md for dataset details, structure, and usage scripts.

Citation

If you use this repository, please cite the relevant papers and repositories as described in 1xgpt/README.md and test-scripts/vid-model/Cosmos-Tokenizer/README.md.

License


For more details, see individual module READMEs and documentation.

About

World Model with Physical Information for Robotic Planning Task

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published