Skip to content

twaclaw/lehmer

Repository files navigation

Lehmer

A minimal, vectorized, and batchable implementation of Lehmer codes.

Rubik's Cube

Lehmer codes, named after D.H. Lehmer, offer a method for enumerating the permutations of a set. The Lehmer code counts the number of inversions in a permutation. Together with the factoradic base, they provide a way to uniquely encode permutations as integers. Therefore, this encoding provides a bijection between integers and permutations. In other words, it is a perfect, memory-efficient hashing function for permutations.

Installation

Installing from PyPI:

[uv] pip install lehmer

Installing from source:

git clone https://github.com/twaclaw/lehmer.git
cd lehmer
uv venv
source .venv/bin/activate
uv sync

Description

The Lehmer class provides two pairs of methods depicted below in blue. There are also two convenience functions, encode and decode, that combine the pairs for encoding and decoding permutations to and from integer indices (depicted below in orange).

$$ \underbrace{\text{permutation} \xrightarrow{\text{\color{blue}{perm2code}}} \text{code} \xrightarrow{\text{\color{blue}{code2index}}} \text{index} \in \mathbb{Z}}_{\text{\color{orange}{encode}}} $$

$$ \underbrace{\text{permutation} \xleftarrow{\text{\color{blue}{code2perm}}} \text{code} \xleftarrow{\text{\color{blue}{index2code}}} \text{index} \in \mathbb{Z}}_{\text{\color{orange}{decode}}} $$

Examples

Simple encoding and decoding

from lehmer import Lehmer

lc = Lehmer(n=4)
perm = [2, 0, 3, 1] # can also be a numpy array
lc.encode(perm, squeeze=True)
# 13

lc.decode(13, squeeze=True)
# array([2, 0, 3, 1], dtype=uint64) -> dtype defaults to np.uint64

Batch encoding and decoding

from lehmer import Lehmer
import numpy as np
N, BATCH = 5, 6
s = np.arange(N)
perms = np.array([np.random.permutation(s) for _ in range(BATCH)])
print(perms)

lc = Lehmer(n=N, dtype=np.uint16)
idx = lc.encode(perms)

# [[2 3 1 0 4]
#  [4 3 1 2 0]
#  [4 1 0 2 3]
#  [0 1 2 4 3]
#  [4 2 1 3 0]
#  [1 3 2 0 4]]

perms2 = lc.decode(idx)
print(perms2)

# [[2 3 1 0 4]
#  [4 3 1 2 0]
#  [4 1 0 2 3]
#  [0 1 2 4 3]
#  [4 2 1 3 0]
#  [1 3 2 0 4]]

Additional options

N = 20
lc = Lehmer(n=N)
perms = np.array([np.random.permutation(np.arange(N)) + i for i in range(50)])
print(perms.shape)
# (50, 20)

# Return the calculated minimum values along with the codes
codes, minvalues = lc.perm2code(perms, return_minvalue=True)
print(codes.shape, minvalues.shape)
# (50, 20) (50, )

# validate inputs: dtypes and shapes
lc2 = Lehmer(n=4, validate_inputs=True)
code = np.arange(4, dtype=float)
lc2.code2perm(code)
# ValueError: Invalid dtype: float64. dtype must be a subinstance of numpy.integer

See the docstrings for more details.

A note on the performance

perm2code doesn't have any Python loops. code2perm has a single Python loop over n, which I didn't manage to eliminate yet. Maybe it is not possible.

I implemented a second version of perm2code, namely perm2code_2, which has a loop over n. This implementation is more memory-efficient and can be faster depending on n and the batch size b. See this notebook for a performance comparison.

You have to see which implementation works better for your use case. encode uses perm2code. If you want to use perm2code_2, you have to call the individual methods directly.

Contributing

That would be awesome! Please read the contributing guidelines if you wish to contribute to this project.

Credits

About

A minimal, vectorized, and batchable implementation of Lehmer codes written in Python.

Resources

Contributing

Stars

Watchers

Forks

Packages

No packages published