A lightweight geospatial raster datatype library for Python focused on simplicity.
For more details, read the documentation: https://rastr.readthedocs.io/en/stable/.
rastr provides an intuitive interface for creating, reading, manipulating, and exporting geospatial raster data in Python.
- ๐งฎ Complete raster arithmetic: Full support for mathematical operations (
+,-,*,/) between rasters and scalars. - ๐ Flexible visualization: Built-in plotting with matplotlib and interactive mapping with folium.
- ๐บ๏ธ Geospatial analysis tools: Contour generation, Gaussian blurring, and spatial sampling.
- ๐ ๏ธ Data manipulation: Fill NaN values, extrapolate missing data, and resample to different resolutions.
- ๐ Seamless integration: Works with GeoPandas, rasterio, and the broader Python geospatial ecosystem.
โ๏ธ Vector-to-raster workflows: Convert GeoDataFrame polygons, points, and lines to raster format.
# With uv
uv add rastr
# With pip
pip install rastrfrom pyproj.crs.crs import CRS
from rasterio.transform import from_origin
from rastr import Raster, RasterMeta
from rastr.create import full_raster
# Create an example raster
raster = Raster.example()
# Write to and read from a file
raster.to_file("raster.tif")
raster = Raster.read_file("raster.tif")
# Basic arithmetic operations
doubled = raster * 2
summed = raster + 10
combined = raster + doubled
# Visualize the data
ax = raster.plot(cbar_label="Values")
# Interactive web mapping (requires folium)
m = raster.explore(opacity=0.8, colormap="plasma")
# Sample values at specific coordinates
xy_points = [(100.0, 200.0), (150.0, 250.0)]
values = raster.sample(xy_points)
# Generate contour lines
contours = raster.contour(levels=[0.1, 0.5, 0.9], smoothing=True)
# Apply spatial operations
blurred = raster.blur(sigma=2.0) # Gaussian blur
filled = raster.extrapolate(method="nearest") # Fill NaN values via nearest-neighbours
resampled = raster.resample(cell_size=0.5) # Change resolution
# Export to file
raster.to_file("output.tif")
# Convert to GeoDataFrame for vector analysis
gdf = raster.as_geodataframe(name="elevation")from rastr import RasterRaster.bbox- bounding box polygon.Raster.bounds- bounding box as(xmin, ymin, xmax, ymax).Raster.cell_size- cell size.Raster.crs- coordinate reference system.Raster.shape- raster shape (rows, columns).Raster.transform- affine transform.Raster.sample(xy)- sample raster values at given coordinates.
Raster.read_file(path)- read raster from file.Raster.to_file(path)- write raster to file.Raster.to_clipboard()- copy raster data to clipboard in a tabular format.
Raster.crop(bounds)- remove cells outside given bounds.Raster.pad(width)- add NaN border around raster.Raster.resample(cell_size)- resample raster to a new cell size.Raster.taper_border(width)- gradually reduce values to zero at the border.Raster.gdf()- Vectorize to a GeoDataFrame of cell polygons and values.
Raster.clip(polygon)- replace values outside a polygon with NaN.Raster.extrapolate()- fill NaN values via nearest-neighbours.Raster.fillna(value)- fill NaN values with a specified value.Raster.replace(to_replace, value)- replace specific cell values.Raster.replace_polygon(polygon, value)- replace cell values within a polygon.Raster.trim_nan()- remove border rows/columns that are entirely NaN.
Raster.blur(radius)- apply Gaussian blur.Raster.dilate(radius)- apply morphological dilation.Raster.sobel()- apply Sobel filter (edge detection/gradient).
Raster.explore()- interactive web map visualization with folium.Raster.plot()- matplotlib static plot with colorbar.Raster.contour(levels)- get a GeoDataFrame of contour lines.
Raster.apply(func)- apply a function to cell values.Raster.abs()- absolute value of cell values.Raster.clamp()- clip cell values to an(a_min, a_max)range.Raster.exp()- exponential of cell values.Raster.log()- logarithm of cell values.Raster.max()- maximum of cell values.Raster.mean()- mean of cell values.Raster.median()- median of cell values.Raster.min()- minimum of cell values.Raster.normalize()- normalize cell values to [0, 1].Raster.quantile(q)- quantile of cell values.Raster.std()- standard deviation of cell values.Raster.sum()- sum of cell values.Raster.unique()- array of unique cell values.
Current version limitations:
- Only Single-band rasters are supported.
- In-memory processing only (streaming support planned).
- Square cells only (rectangular cell support planned).
- Only float dtypes (integer support planned).
- rasters is a project with similar goals of providing a dedicated raster datatype in Python with higher-level interfaces for GIS operations. Unlike
rastr, it has support for multi-band rasters, and has some more advanced functionality for Earth Science applications. Both projects are relatively new and under active development. - rasterio is a core dependency of
rastrand provides low-level raster I/O and processing capabilities. - rioxarray extends
xarrayfor raster data with geospatial support viarasterio.
See the CONTRIBUTING.md file.