Skip to content

tnsaai/HealthGen

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 

Repository files navigation

HealthGen - Medical Image Disease Classifier

Deep Learning system for brain MRI classification and segmentation using CT Scan and X-Ray images to diagnose multiple diseases.

Features

  • Brain MRI Classification: ResNet18-based classifier for 4 brain conditions
  • Segmentation Masks: UNet XL model for generating attention masks
  • Real-time Prediction: Fast inference on medical images
  • Visualization: Side-by-side comparison of original, prediction, and mask

Supported Diseases

  • Glioma
  • Meningioma
  • No Tumor
  • Pituitary Tumor

Installation

git clone https://github.com/TnsaAi/HealthGen.git
cd HealthGen
pip install -r requirements.txt

Dataset Structure

Organize your dataset:

archive/Training/
├── glioma/
├── meningioma/
├── notumor/
└── pituitary/

Usage

1. Train Classifier

python train_medical_classifier.py

2. Test System

python test_system.py

3. Prepare Dataset

python prepare_dataset.py

4. Single Prediction

python predict.py path/to/image.jpg

Model Architecture

  • Classifier: ResNet18 (modified for grayscale input)
  • Segmentation: UNet XL with encoder-decoder architecture
  • Input Size: 128x128 grayscale images
  • Output: Disease classification + attention mask

Files

  • train_medical_classifier.py - Main training script
  • rl_mri_model.py - UNet model definition
  • prepare_dataset.py - Dataset preparation utilities
  • predict.py - Single image prediction
  • requirements.txt - Dependencies

Requirements

torch>=1.9.0
torchvision>=0.10.0
PIL>=8.0.0
matplotlib>=3.3.0
numpy>=1.21.0
tqdm>=4.62.0

Model Performance

  • Training: Mixed precision with data augmentation
  • Validation: Real-time accuracy monitoring
  • Inference: GPU/CPU compatible

License

MIT License

Contributing

  1. Fork the repository
  2. Create feature branch
  3. Commit changes
  4. Push to branch
  5. Create Pull Request

About

Offical Respoitory of the HealthGen Models and Inference Code

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages