Deep Learning system for brain MRI classification and segmentation using CT Scan and X-Ray images to diagnose multiple diseases.
- Brain MRI Classification: ResNet18-based classifier for 4 brain conditions
- Segmentation Masks: UNet XL model for generating attention masks
- Real-time Prediction: Fast inference on medical images
- Visualization: Side-by-side comparison of original, prediction, and mask
- Glioma
- Meningioma
- No Tumor
- Pituitary Tumor
git clone https://github.com/TnsaAi/HealthGen.git
cd HealthGen
pip install -r requirements.txtOrganize your dataset:
archive/Training/
├── glioma/
├── meningioma/
├── notumor/
└── pituitary/
python train_medical_classifier.pypython test_system.pypython prepare_dataset.pypython predict.py path/to/image.jpg- Classifier: ResNet18 (modified for grayscale input)
- Segmentation: UNet XL with encoder-decoder architecture
- Input Size: 128x128 grayscale images
- Output: Disease classification + attention mask
train_medical_classifier.py- Main training scriptrl_mri_model.py- UNet model definitionprepare_dataset.py- Dataset preparation utilitiespredict.py- Single image predictionrequirements.txt- Dependencies
torch>=1.9.0
torchvision>=0.10.0
PIL>=8.0.0
matplotlib>=3.3.0
numpy>=1.21.0
tqdm>=4.62.0
- Training: Mixed precision with data augmentation
- Validation: Real-time accuracy monitoring
- Inference: GPU/CPU compatible
MIT License
- Fork the repository
- Create feature branch
- Commit changes
- Push to branch
- Create Pull Request