- Table of Contents
- Overview
- Updates
- Requirements
- Installation
- Model Checkpoints
- Data Format
- Running Inference
- Training
- Troubleshooting
- Citation
Motus is a unified latent action world model that leverages existing pretrained models and rich, sharable motion information. Motus introduces a Mixture-of-Transformers (MoT) architecture to integrate three experts (understanding, action, and video generation) and adopts a UniDiffuser-style scheduler to enable flexible switching between different modeling modes (World Models, Vision-Language-Action Models, Inverse Dynamics Models, Video Generation Models, and Video-Action Joint Prediction Models). Motus further leverages optical flow to learn latent actions and adopts a three-phase training pipeline and six-layer data pyramid, thereby extracting pixel-level "delta action" and enabling large-scale action pretraining.
| Component | Base Model | Parameters |
|---|---|---|
| VGM (Video Generation Model) | Wan2.2-5B | ~5.00B |
| VLM (Vision-Language Model) | Qwen3-VL-2B | ~2.13B |
| Action Expert | - | ~641.5M |
| Understanding Expert | - | ~253.5M |
| Total | - | ~8B |
Key Results (RoboTwin 2.0 Simulation. With 50 clean and 500 randomized data entries per task, we merge the data from all 50 tasks for multi-task training.):
- 87.02% average success rate (+15% over X-VLA, +45% over π₀.₅)
- [2025-12-16] Initial release of Motus with pretrained checkpoints and training code.
- [2025-12-20] Simple RoboTwin inference
- [2025-12-24] LeRobotDataset format support
- [2025-12-24] Optimized training scripts
- [2025-12-26] MultiLeRobotDataset format support
- [2025-12-27] RoboTwin raw dataset conversion
- [2025-12-27] Three-view image concatenation scripts
We welcome community members to help maintain and extend Motus. Welcome to join the Motus community and contribute together!
| Mode | VRAM | Recommended GPU |
|---|---|---|
| Inference (with pre-encoded T5) | > 24 GB | RTX 5090 |
| Inference (without pre-encoded T5) | ~ 41 GB | A100 (40GB) / A100 (80GB) / H100 / B200 |
| Training | > 80 GB | A100 (80GB) / H100 / B200 |
# Clone the repository
git clone https://github.com/thu-ml/Motus.git
cd Motus
# Create conda environment
conda create -n motus python=3.10 -y
conda activate motus
# install torch (cuda12.8)
pip install torch==2.7.1 torchvision==0.22.1 --index-url https://download.pytorch.org/whl/cu128
# install flash
pip install flash-attn --no-build-isolation
# Install motus dependencies
pip install -r requirements.txt
# (Optinal) Install lerobot dependencies
pip install --no-deps lerobot==0.3.2
pip install -r requirements/lerobot.txtWe provide multiple checkpoints for different use cases:
| Model | Use Case | Description | Checkpoint Path |
|---|---|---|---|
| Motus_Wan2_2_5B_pretrain | Pretrain / VGM Backbone | Stage 1 VGM pretrained checkpoint | motus-robotics/Motus_Wan2_2_5B_pretrain |
| Motus | Fine-Tuning | Stage 2 latent action pretrained checkpoint | motus-robotics/Motus |
| Motus_robotwin2 | Inference / Fine-Tuning | Stage 3 RoboTwin2 fine-tuned checkpoint | motus-robotics/Motus_robotwin2 |
Download checkpoints:
# Create pretrained models directory
mkdir -p pretrained_models
# Download Motus checkpoints
huggingface-cli download motus-robotics/Motus_Wan2_2_5B_pretrain --local-dir ./pretrained_models/Motus_Wan2_2_5B_pretrain
huggingface-cli download motus-robotics/Motus --local-dir ./pretrained_models/Motus
huggingface-cli download motus-robotics/Motus_robotwin2 --local-dir ./pretrained_models/Motus_robotwin2
# Download foundation models
huggingface-cli download Qwen/Qwen3-VL-2B-Instruct --local-dir ./pretrained_models/Qwen3-VL-2B-Instruct
huggingface-cli download Wan-AI/Wan2.2-TI2V-5B --local-dir ./pretrained_models/Wan2.2-TI2V-5BUpdate config paths in your embodiment-specific config file (e.g., configs/robotwin.yaml, configs/ac_one.yaml, or other embodiment configs):
model:
wan:
checkpoint_path: "./pretrained_models/Motus_Wan2_2_5B_pretrain"
config_path: "./pretrained_models/Motus_Wan2_2_5B_pretrain"
vae_path: "./pretrained_models/Wan2.2-TI2V-5B/Wan2.2_VAE.pth"
vlm:
checkpoint_path: "./pretrained_models/Qwen3-VL-2B-Instruct"
config_path: "./pretrained_models/Qwen3-VL-2B-Instruct"Motus supports three types of datasets with specific directory structures for optimal training and inference.
📖 See detailed guide: Data Format Guide
Quick Overview:
- RoboTwin 2.0: Simulation data with clean/randomized splits
- Real-World: AC-One, Aloha-Agilex-2 robot data
Data Conversion Tools:
📖 See detailed guide: Inference Guide
- RoboTwin 2.0: Evaluation Setup
- Real-World: Minimal inference without robot environment
Motus follows a three-stage training pipeline:
| Stage | Data | Training |
|---|---|---|
| Pretrained Foundation Models | Level 1: Web Data | VGM and VLM |
| Stage 1 (VGM Training) | Level 2: Egocentric Human Videos Level 3: Synthetic Data Level 5: Multi-Robot Task Trajectory |
Only VGM |
| Stage 2 (Motus Pretraining) | Level 2: Egocentric Human Videos Level 3: Synthetic Data Level 4: Task-agnostic Data Level 5: Multi-Robot Task Trajectory |
Motus (all 3 experts, with latent actions) |
| Stage 3 (Motus SFT) | Level 6: Target-Robot Task Trajectory | Motus (all 3 experts, with actions) |
The six-layer data pyramid is shown in the figure here:
📖 See detailed guide: Training Guide
Data Preparation:
📖 Detailed guides:
If you find our work helpful, please cite us:
@misc{bi2025motusunifiedlatentaction,
title={Motus: A Unified Latent Action World Model},
author={Hongzhe Bi and Hengkai Tan and Shenghao Xie and Zeyuan Wang and Shuhe Huang and Haitian Liu and Ruowen Zhao and Yao Feng and Chendong Xiang and Yinze Rong and Hongyan Zhao and Hanyu Liu and Zhizhong Su and Lei Ma and Hang Su and Jun Zhu},
year={2025},
eprint={2512.13030},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2512.13030},
}Thank you!