Skip to content

thnkinbtfly/STUN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

STUN

We provide scripts that we used for our experiments.

We also provide our optimized version of OWL and wanda that prunes 480B model even only one 80GB GPU.

STUN with snowflake-arctic

python utils/merge_weight.py --model_path snowflake-arctic --output_dir=new_arctic_snowflake_0.5_127_26_3570_nodivnorm_greedy_but_reject_mixed_load_max2 --layer_num 35 --gate_template "model.layers.{}.block_sparse_moe.gate.weight" --threshold=0.5 --top_k=127 --division_by_norm=False --merge_method=greedy_but_reject_mixed --snake_case_model_name=arctic --expert_num_key_in_config=num_local_experts --expert_template=model.layers.{}.block_sparse_moe.experts.{}.w1.weight,model.layers.{}.block_sparse_moe.experts.{}.w2.weight,model.layers.{}.block_sparse_moe.experts.{}.w3.weight --router_logits_file=arctic.txt  --load_path=arctic.pt --divide_mean  --merge_max_clusters=2  --binary_search_target=3570 

Then run OWL or wanda.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published