Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file modified __pycache__/cross_validation.cpython-36.pyc
Binary file not shown.
Binary file modified __pycache__/function.cpython-36.pyc
Binary file not shown.
Binary file modified __pycache__/init_node.cpython-36.pyc
Binary file not shown.
328 changes: 100 additions & 228 deletions cross_validation.py

Large diffs are not rendered by default.

19 changes: 0 additions & 19 deletions function.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,22 +4,3 @@ def sigmoid(x):
return 1 / (1 + math.exp(-x))
def hyperbolicTangent(x):
return math.tanh(x/2)

def unitStep(x,beta):
if (x >= beta):
y = 1
return y
elif (x < beta):
y = -1
return y

def ramp(x,beta):
if(x >= beta):
y = 1
return y
elif(-beta < x < beta):
y = x
return y
elif(x <= -beta):
y = -1
return y
9 changes: 0 additions & 9 deletions init_node.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,6 @@ def createHiddenLayers(number_of_features,number_of_layers,number_of_nodes,numbe
node.clear()
final.append(layer)

# final.append(layer)
#The last hidden layer connected to an output layer
count = 0
while count < int(number_of_nodes):
Expand All @@ -57,16 +56,11 @@ def createBias(number_of_nodes,number_of_layers):
for layer_count in range(0,int(number_of_layers)):
arr = np.random.uniform(low=-1.0,high=1.0,size=int(number_of_nodes))
weight_bias.append(arr)
# weight_bias.append(layer1)

#initial bias as 1
for layer_count in range(0,int(number_of_layers)):
arr = np.ones(int(number_of_nodes))
bias.append(arr)
# bias.append(layer2)
# print(weight_bias)
# print()
# print(bias)
return weight_bias, bias


Expand All @@ -77,7 +71,6 @@ def createY(number_of_nodes, number_of_layers):
for layer_count in range(0, int(number_of_layers)):
arr = np.zeros(int(number_of_nodes))
layer.append(arr)
# final.append(layer)
return layer

def createLocalGradOutput(number_of_classes):
Expand All @@ -87,9 +80,7 @@ def createLocalGradOutput(number_of_classes):
def createLocalGradHidden(number_of_nodes, number_of_layers):
node = []
arr_grad_hidden = []
# final = []
for layer_count in range(0, int(number_of_layers)):
arr = np.zeros(int(number_of_nodes))
arr_grad_hidden.append(arr)
# final.append(layer)
return arr_grad_hidden
31 changes: 6 additions & 25 deletions mlp.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,8 +59,6 @@ def main():
arr_hidden_layers = init.createHiddenLayers(number_of_features,number_of_layers,number_of_nodes,number_of_classes)
arr_hidden_layers_new = init.createHiddenLayers(number_of_features,number_of_layers,number_of_nodes,number_of_classes)
arr_hidden_layers_template = init.createHiddenLayers(number_of_features,number_of_layers,number_of_nodes,number_of_classes)
# arr_hidden_layers_new = copy.deepcopy(arr_hidden_layers)
# arr_hidden_layers_template = copy.deepcopy(arr_hidden_layers)
arr_Y = init.createY(number_of_nodes, number_of_layers)
arr_weight_bias, arr_bias = init.createBias(number_of_nodes, number_of_layers)
arr_weight_bias_new, arr_bias_output_new = init.createBias(number_of_nodes, number_of_layers)
Expand All @@ -71,37 +69,20 @@ def main():
arr_weight_bias_output_template, arr_bias_output_template =init.createBias(number_of_classes, 1)
arr_grad_output = init.createLocalGradOutput(number_of_classes)
arr_grad_hidden = init.createLocalGradHidden(number_of_nodes, number_of_layers)
cv.crossValidation("flood-input.csv", "flood-output.csv", "flood-data.csv", fold, arr_input_nodes, arr_hidden_layers, arr_hidden_layers_new, arr_hidden_layers_template, \

input_file = "cross-pat-input.csv"
output_file = "cross-pat-output.csv"
data_file = "cross-pat.csv"
cv.crossValidation(input_file, output_file, data_file, fold, arr_input_nodes, arr_hidden_layers, arr_hidden_layers_new, arr_hidden_layers_template, \
arr_Y, arr_output_nodes, arr_weight_bias, arr_bias, arr_weight_bias_output, arr_bias_output, function, momentum, learning_rate, beta, arr_grad_hidden, arr_grad_output,\
number_of_features, number_of_layers, number_of_nodes, number_of_classes, epoch, arr_weight_bias_template, arr_weight_bias_output_template, arr_weight_bias_new, \
arr_weight_bias_output_new)
# print("arr_hidden_layers : ")
# print(arr_hidden_layers)
# print("arr_hidden_layers_new : ")
# print(arr_hidden_layers_new)
# print("arr_hidden_layers_template : ")
# print(arr_hidden_layers_template)
# print()

print("size of list containing hidden layer : " + str(len(arr_hidden_layers)))
print(str(len(arr_hidden_layers[1])) + " layer(s) of weigh connected to hidden node")
print("1 layer of weight connected to INPUT layer")
print("1 layer connected to OUTPUT layer")
print("total layer of weight : " + str(1 + len(arr_hidden_layers)))
#FOR DEBUGGING!!!
# print("all layer : " + str(len(arr_hidden_layers)))
# print("hidden : " + str(len(arr_hidden_layers[1])))
# print("member in hidden : " + str(len(arr_hidden_layers[1][0])))
# print(arr_Y)
print("arr_weight_bias : " + str(arr_weight_bias))
print("arr_bias : " + str(arr_bias))
print("arr_weight_bias_output : " + str(arr_weight_bias_output))
print("arr_bias_output : " + str(arr_bias_output))
# print("arr_weight_bias : " + str(arr_weight_bias))
# print("arr_bias : " + str(arr_bias))
# print("arr_grad_output : " + str(arr_grad_output))
# print("arr_grad_hidden : " + str(arr_grad_hidden))
# print()


if __name__ == '__main__':
main()