This operator performs PaCMAP (Pairwise Controlled Manifold Approximation) dimensionality reduction on image data in Tercen.
PaCMAP is a dimensionality reduction algorithm that preserves both local and global structure of the data. It is particularly useful for visualization and exploration of high-dimensional data. This operator takes image data in a long format and applies PaCMAP to reduce it to a lower-dimensional representation.
The operator expects data in the following format:
.y: The pixel value.ci: Column index linking to the Column Projection.ri: Row index linking to the Row Projection
eventId: Unique identifier for each image/event.ci: Column index linking to the Main Projection
pixel_id: Unique identifier for each pixel position.ri: Row index linking to the Main Projection
Example of input data:
Main Projection
.ci .ri .y
0 0 1.3
1 0 0.1
0 1 0.5
1 1 0.8
Row Projection
.ri pixel_id
0 1
1 2
Column Projection
.ci eventId
0 1
1 2
The operator outputs a data frame with the following columns:
PaCMAP_1,PaCMAP_2, ...: The coordinates in the reduced dimensionality spaceeventId: The original event identifier.ci: Column index.ri: Row index (set to 0)
n_components(default: 2): Number of dimensions in the embeddingn_neighbors(default: 10): Number of neighbors for the kNN graphMN_ratio(default: 0.5): Ratio of mid-near pairs to be sampledFP_ratio(default: 2.0): Ratio of further pairs to be sampled
- PaCMAP GitHub Repository
- Wang, Y., Huang, H., Rudin, C., & Shaposhnik, Y. (2021). Understanding How Dimension Reduction Tools Work: An Empirical Approach to Deciphering t-SNE, UMAP, TriMAP, and PaCMAP for Data Visualization. Journal of Machine Learning Research, 22(1), 3794-3841.