Skip to content

synheart-ai/synheart-focus

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

10 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Synheart Focus

Cognitive concentration inference engine β€” transforming biosignals and digital behavior into real-time focus intelligence

License: Apache 2.0 Platform Support

Synheart Focus is the cognitive concentration layer of Synheart β€” estimating moment-to-moment focus levels by fusing biosignals, behavioral interaction patterns, and circadian context. It powers Syni, Syni Life, SWIP, and any mind-aware application built on Synheart.

πŸš€ Features

  • 🧠 Real-Time Focus Inference: Continuous focus score estimation (0.0-1.0)
  • πŸ“Š Multimodal Fusion: Combines HRV, stress, motion, and behavioral patterns
  • ⚑ On-Device Processing: Low-latency inference (< 20ms) with < 3MB model footprint
  • 🎯 Focus Labels: Discrete states (focused, distracted, scattered, fatigued)
  • πŸ“ˆ Cognitive Load Estimation: Predicts mental workload and fatigue risk
  • πŸ”’ Privacy-First: No raw biometrics stored; only interpreted signals
  • 🌐 Multi-Platform: Dart/Flutter, Python, Kotlin, Swift
  • πŸ—οΈ HSI-Compatible: Output schema validated against Synheart Core HSI specification

πŸ“¦ SDKs

All SDKs provide identical functionality with platform-idiomatic APIs. Each SDK is maintained in its own repository:

Dart/Flutter SDK

dependencies:
  synheart_focus: ^0.1.0

πŸ“– Repository: synheart-focus-dart

Python SDK

pip install synheart-focus

πŸ“– Repository: synheart-focus-python

Kotlin SDK

dependencies {
    implementation("ai.synheart:focus:0.1.0")
}

πŸ“– Repository: synheart-focus-kotlin

Swift SDK

Swift Package Manager:

dependencies: [
    .package(url: "https://github.com/synheart-ai/synheart-focus-swift.git", from: "0.1.0")
]

πŸ“– Repository: synheart-focus-swift

πŸ—οΈ Relationship with Synheart Core (HSI)

Synheart Focus serves two deployment modes:

1. Standalone SDK (Direct Integration)

Use synheart-focus directly for focus-only applications:

from synheart_focus import FocusEngine, FocusConfig

engine = FocusEngine.from_config(FocusConfig())
focus_state = engine.infer(hsi_data, behavior_data)
print(f"Focus Score: {focus_state.focus_score}")

Use when: Your app only needs focus estimation, not full human state intelligence.

2. Via Synheart Core (HSI Integration)

Use focus as part of a complete Human State Interface with emotion, behavior, and context:

import 'package:synheart_core/synheart_core.dart';

// Initialize synheart-core (includes focus capability)
await Synheart.initialize(
  userId: 'user_123',
  config: SynheartConfig(
    enableWear: true,
    enableBehavior: true,
  ),
);

// Enable focus interpretation layer
await Synheart.enableFocus();

// Get focus updates (powered by synheart-focus under the hood)
Synheart.onFocusUpdate.listen((focus) {
  print('Focus Score: ${focus.score}');
  print('Cognitive Load: ${focus.cognitiveLoad}');
});

Use when: You want focus as part of a unified human state representation (HSV).

Architecture & Dependencies

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚          Synheart Core (HSI Runtime)                β”‚
β”‚                                                     β”‚
β”‚  FocusHead Module                                   β”‚
β”‚    └─► depends on synheart-focus package           β”‚
β”‚         (runtime dependency)                        β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                      β–²
                      β”‚
                      β”‚ runtime: package dependency
                      β”‚ schema: validates against HSI spec
                      β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚          synheart-focus (this repo)                 β”‚
β”‚                                                     β”‚
β”‚  β€’ Standalone focus inference SDK                   β”‚
β”‚  β€’ NO code dependency on synheart-core              β”‚
β”‚  β€’ Output schema validated against:                 β”‚
β”‚    ../synheart-core/docs/HSI_SPECIFICATION.md       β”‚
β”‚                                                     β”‚
β”‚  FocusEngine β†’ FocusResult                          β”‚
β”‚                                                     β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Key Principles:

  • βœ… Standalone: synheart-focus works independently, no core dependency
  • βœ… HSI-Compatible: Output schema matches HSI FocusState specification
  • βœ… Schema Validation: CI enforces compatibility with HSI spec
  • βœ… Used by Core: synheart-core's FocusHead uses synheart-focus as implementation
  • βœ… Backward Compatible: Existing standalone users unaffected

πŸ“‚ Repository Structure

This repository serves as the source of truth for shared resources across all SDK implementations:

synheart-focus/                    # Source of truth repository
β”œβ”€β”€ models/                        # ML model definitions and assets
β”‚   └── README.md                  # Model documentation
β”‚
β”œβ”€β”€ docs/                          # Technical documentation
β”‚   β”œβ”€β”€ ARCHITECTURE.md            # System architecture
β”‚   β”œβ”€β”€ API_REFERENCE.md           # API documentation
β”‚   β”œβ”€β”€ INTEGRATION.md             # Integration guides
β”‚   └── MODEL_CARD.md              # Model details and performance
β”‚
β”œβ”€β”€ tools/                         # Development tools
β”‚   β”œβ”€β”€ validate_hsi_schema.py     # HSI schema validation (CI)
β”‚   └── README.md                  # Tools documentation
β”‚
β”œβ”€β”€ examples/                      # Cross-platform example applications
β”‚   └── README.md                  # Examples documentation
β”œβ”€β”€ scripts/                       # Build and deployment scripts
β”‚   └── README.md                  # Scripts documentation
β”œβ”€β”€ .github/workflows/             # CI/CD including HSI schema checks
β”œβ”€β”€ CHANGELOG.md                   # Version history for all SDKs
└── CONTRIBUTING.md                # Contribution guidelines for all SDKs

Platform-specific SDK repositories (maintained separately):

🎯 Quick Start

Dart/Flutter

import 'package:synheart_focus/synheart_focus.dart';

// Initialize
final focusEngine = FocusEngine.initialize(
  config: FocusConfig(),
);

// Subscribe to updates
focusEngine.onUpdate.listen((focusState) {
  print('Focus Score: ${focusState.focusScore}');
  print('Label: ${focusState.focusLabel}');
});

// Provide inputs and get focus state
final hsiData = HSIData(
  hr: 72,
  hrvRmssd: 45,
  stressIndex: 0.3,
  motionIntensity: 0.1,
);

final behaviorData = BehaviorData(
  taskSwitchRate: 0.2,
  interactionBurstiness: 0.15,
  idleRatio: 0.1,
);

final focusState = await focusEngine.infer(hsiData, behaviorData);

Python

from synheart_focus import FocusEngine, FocusConfig

# Initialize engine
config = FocusConfig()
engine = FocusEngine.from_config(config)

# Subscribe to focus updates
def on_focus_update(focus_state):
    print(f"Focus Score: {focus_state.focus_score}")
    print(f"Label: {focus_state.focus_label}")
    print(f"Cognitive Load: {focus_state.cognitive_load}")

engine.subscribe(on_focus_update)

# Provide HSI inputs
hsi_data = {
    "hr": 72,
    "hrv_rmssd": 45,
    "stress_index": 0.3,
    "motion_intensity": 0.1
}

behavior_data = {
    "task_switch_rate": 0.2,
    "interaction_burstiness": 0.15,
    "idle_ratio": 0.1
}

# Infer focus state
focus_state = engine.infer(hsi_data, behavior_data)

Kotlin

import ai.synheart.focus.*

val config = FocusConfig()
val engine = FocusEngine.fromConfig(config)

// Subscribe to updates
engine.subscribe { focusState ->
    println("Focus Score: ${focusState.focusScore}")
    println("Label: ${focusState.focusLabel}")
    println("Cognitive Load: ${focusState.cognitiveLoad}")
}

// Provide HSI inputs
val hsiData = mapOf(
    "hr" to 72,
    "hrv_rmssd" to 45,
    "stress_index" to 0.3,
    "motion_intensity" to 0.1
)

val behaviorData = mapOf(
    "task_switch_rate" to 0.2,
    "interaction_burstiness" to 0.15,
    "idle_ratio" to 0.1
)

// Infer focus state
val focusState = engine.infer(hsiData, behaviorData)

Swift

import SynheartFocus

let config = FocusConfig()
let engine = try FocusEngine.fromConfig(config: config)

// Subscribe to updates
engine.subscribe { focusState in
    print("Focus Score: \(focusState.focusScore)")
    print("Label: \(focusState.focusLabel)")
    print("Cognitive Load: \(focusState.cognitiveLoad)")
}

// Provide HSI inputs
let hsiData: [String: Any] = [
    "hr": 72,
    "hrv_rmssd": 45,
    "stress_index": 0.3,
    "motion_intensity": 0.1
]

let behaviorData: [String: Any] = [
    "task_switch_rate": 0.2,
    "interaction_burstiness": 0.15,
    "idle_ratio": 0.1
]

// Infer focus state
let focusState = try engine.infer(hsiData: hsiData, behaviorData: behaviorData)

πŸ—οΈ Architecture

Standalone Mode

Synheart Focus is a multimodal fusion model that combines:

Inputs

  1. HSI (Biosignal) Inputs:

    • Heart rate (HR)
    • Heart rate variability (HRV - RMSSD, stability, variability)
    • Stress index
    • Motion intensity / micro-jitter
    • Respiration proxies (if available)
    • HSI embedding vector
    • Short rolling history (2-5 minutes)
    • Circadian context
  2. Behavioral Inputs (from Synheart Behavior SDK):

    • Task switch rate
    • Interaction burstiness
    • Idle ratio
    • Notification interruptions
    • Steady vs scattered interaction rhythm
  3. Context Inputs:

    • Sleep deficit
    • Recovery score
    • Circadian phase
    • Time since last break
    • Time-of-day patterns

Outputs

For every time window (30-60 seconds, updated every 1-2 minutes):

Output Description Range
focus_score Continuous focus estimate 0.0 β†’ 1.0
focus_label Discrete state focused, distracted, scattered, fatigued
focus_trend Short-term trend increasing, decreasing, stable
cognitive_load Workload estimate low, normal, high
deep_focus_block Sustained focus flag true/false
fatigue_risk Focus decline likelihood 0.0 β†’ 1.0

System Flow (Standalone)

Wear SDK / Phone / Behavior SDKs
                β”‚
                β–Ό
              HSI
     (cleaned signals + embeddings)
                β”‚
                β–Ό
        Synheart Focus Engine
      (Tiny Transformer or CNN-LSTM)
                β”‚
                β–Ό
           FocusResult
                β”‚
                β–Ό
          Your Application

HSI Integration Mode

When used via Synheart Core:

Synheart Core SDK
β”œβ”€β”€ Wear Module (collects HR/RR from wearable)
β”œβ”€β”€ Phone Module (device motion, screen state)
β”œβ”€β”€ Behavior Module (interaction patterns)
β”‚   └── HSI Runtime (processes biosignals, multimodal fusion)
β”‚       └── FocusHead Module
β”‚           └── synheart-focus FocusEngine
β”‚               [Multimodal Fusion Model]
β”‚                       β”‚
β”‚                  FocusResult
β”‚                       β”‚
β”‚            mapped to HSV.focus
β”‚                       β”‚
β”‚                       β–Ό
β”‚         Complete Human State Vector
β”‚         β”œβ”€ Focus (score, cognitive load, clarity)
β”‚         β”œβ”€ Emotion (stress, calm, engagement)
β”‚         β”œβ”€ Behavior (interaction patterns)
β”‚         └─ Context (activity, environment)
β”‚                       β”‚
β”‚         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚         β–Ό                         β–Ό
β”‚       Syni              Syni Life / SWIP / Platform

πŸ“š Documentation

🎯 Use Cases

By Syni (AI Agent)

  • Focus-aware tone adjustment
  • Strategy selection based on focus state
  • Interruption management during deep focus

By Syni Life (Daily User App)

  • Focus score card
  • Deep focus block detection
  • Daily and hourly focus trends
  • Actionable insights ("Your focus is declining; take a 2-minute break.")

By SWIP (Digital Wellness)

  • Labeling digital sessions as focused, neutral, fragmented
  • Focus-aware app scoring
  • Session-level focus curves

By Synheart Platform (Developer Portal)

  • Developer dashboards
  • Cognitive performance analytics
  • Aggregated state insights

⚑ Performance

  • Inference Latency: < 20ms on-device
  • Model Footprint: < 3MB
  • Battery Impact: Minimal (< 0.5%/hr)
  • Update Frequency: Every 60-120 seconds
  • Cloud Aggregation: < 15 seconds for daily summaries

πŸ”’ Privacy & Security

  • No Content Captured: No text, URLs, messages, or screen content
  • Only Timing + Biosignal Features: Derived features only, no raw data
  • On-Device Processing: All inference happens locally
  • Consent-Gated: All behavioral and focus data requires explicit consent
  • No Data Retention: Raw biometric data is not retained after processing
  • No Network Calls: No data is sent to external servers
  • Privacy-First Design: No built-in storage - you control what gets persisted
  • Non-Clinical: Not a judgment or productivity metric; cannot diagnose impairment

πŸ“Š Benchmarks

  • Focus Score Accuracy: High correlation with known behavioral patterns
  • Missing Samples: < 5% per day
  • Inference Latency: 95th percentile < 30ms
  • State Update Accuracy: Within 1 window

🀝 Contributing

We welcome contributions! Please see CONTRIBUTING.md for guidelines.

πŸ“„ License

This project is licensed under the Apache License 2.0 - see the LICENSE file for details.

πŸ”— Related Projects & Dependencies

Consumed By

  • Synheart Core SDK - Unified SDK for all Synheart features
    • Uses synheart-focus as FocusHead implementation
    • Runtime dependency: synheart-core β†’ synheart-focus
    • Schema validation: synheart-focus validates against HSI spec

Related SDKs

  • Synheart Emotion - Physiological emotion inference

    • Similar architecture: standalone SDK used by synheart-core EmotionHead
    • Also validates against HSI specification
  • Synheart Behavior - Digital behavioral signal capture

    • Provides behavioral inputs for focus estimation
    • Used by: Behavior Module in synheart-core
  • Synheart Wear - Wearable device integration

    • Provides biosignal inputs (HR, HRV) for focus estimation
    • Used by: Wear Module in synheart-core

Dependency Architecture

Runtime Dependencies (package):
  synheart-core β†’ synheart-focus (FocusHead implementation)
  synheart-focus β†’ (standalone, no dependencies on core)

Schema Validation (no code dependency):
  synheart-focus ← validates against HSI_SPECIFICATION.md

Key Principle:

  • synheart-focus remains a standalone SDK
  • Can be used independently without synheart-core
  • synheart-core uses it as implementation layer for FocusHead
  • Output schema validated against HSI specification for compatibility

πŸ”— Links

πŸ‘₯ Authors

  • Israel Goytom - Initial work, RFC Design & Architecture
  • Synheart AI Team - Development & Research

Made with ❀️ by the Synheart AI Team

Technology with a heartbeat.

About

No description, website, or topics provided.

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •