A machine learning-based web application for detecting fraudulent credit card transactions in real-time.
- Real-time fraud detection for single transactions
- Batch processing of transactions via CSV upload
- Transaction history tracking
- User-friendly interface with visual feedback
- Responsive design for all devices
- Secure data handling
- Frontend: HTML, CSS (Tailwind CSS), JavaScript
- Backend: Python (Flask)
- Machine Learning: scikit-learn
- Database: SQLite
- Other Libraries: pandas, numpy
-
Suraj Srivasatv - Backend and ML Developer
- GitHub: @surajsri23
- LinkedIn: Suraj Srivastav
-
Sunny Kumar Yadav - Frontend Developer
- GitHub: @sunnyadavji
- LinkedIn: Sunny Kumar Yadav
-
Shamshad Ali - Research Lead
- GitHub: @shamshad45481
- LinkedIn: Shamshad Ali
-
Suhani Singh - Documentation lead
- GitHub: @Suhanisingh13
- LinkedIn: Suhani Singh
- Clone the repository:
git clone https://github.com/surajsri23/SwiftSecure.git
cd credit-card-fraud-detection- Create and activate a virtual environment:
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate- Install dependencies:
pip install -r requirements.txt- Run the application:
python app.py- Open your browser and navigate to:
http://localhost:5000
The application is deployed on Render.com. To deploy your own instance:
-
Create a Render account at https://render.com
-
Connect your GitHub repository:
- Click "New +" and select "Web Service"
- Connect your GitHub repository
- Select the repository
- Configure the service:
- Name: swiftsecure
- Environment: Python
- Build Command:
pip install -r requirements.txt - Start Command:
gunicorn app:app - Python Version: 3.10.0
-
Add environment variables:
- FLASK_ENV=production
- PYTHON_VERSION=3.10.0
-
Click "Create Web Service"
The application will be automatically deployed and available at:
https://swiftsecure.onrender.com
credit-card-fraud-detection/
βββ app.py # Main Flask application
βββ model.py # Machine learning model
βββ requirements.txt # Python dependencies
βββ render.yaml # Render deployment configuration
βββ static/ # Static files
β βββ css/ # CSS styles
β βββ js/ # JavaScript files
β βββ images/ # Image assets
βββ templates/ # HTML templates
βββ index.html # Main page template
-
Single Transaction Check:
- Fill in the transaction details
- Click "Analyze" to check for fraud
- View the result with color-coded feedback
-
Batch Upload:
- Prepare a CSV file with transaction data
- Click "Choose File" to select the CSV
- Click "Upload & Scan" to process all transactions
- View the results summary
-
Transaction History:
- View all processed transactions
- Filter by status (Safe/Fraudulent)
- Clear history when needed
- Input validation
- File type verification
- Secure data handling
- Error handling
- User confirmation for critical actions
- Fork the repository
- Create a feature branch
- Commit your changes
- Push to the branch
- Create a Pull Request
This project is licensed under the MIT License - see the LICENSE file for details.
- Credit Card Fraud Detection Dataset from Kaggle
- Team members for their contributions
- Open-source community for tools and libraries