Skip to content

suniltyagi/SKANN-SSL-Demo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SKANN-SSL V2.1.0 Demo

Underwater Acoustic Vessel Classification System

Self-supervised learning approach for classifying vessel types from hydrophone audio signatures.

© 2026 Oravont Systems LLP. All rights reserved.


Features

  • 4-Class Vessel Classification: Cargo Ship, Tanker, Fishing Vessel, Small Craft
  • Real-time Audio Playback: Listen to acoustic signatures while classifying
  • Radar Plot Visualization: Interactive probability display
  • Physics-Aware Architecture: Selective Kernel convolutions tuned for underwater acoustics (15–500+ Hz)

Installation

# 1. Install dependencies
pip install -r requirements.txt

# 2. Run the demo
python skann_ssl_demo.py

Requirements

  • Python 3.10+
  • Windows / macOS / Linux
  • ~500 MB disk space (model + sample data)

Folder Structure

SKANN-SSL-Demo/
├── skann_ssl_demo.py          # Main demo application
├── requirements.txt           # Python dependencies
├── README.md                  # This file
├── model/
│   ├── SKANN_SSL_Production_Bundle.joblib    # Trained encoder
│   └── vessel_territories.joblib              # Classification centroids
└── data/
    ├── manifest.csv           # Clip metadata
    └── tensors/               # Audio tensors (16 kHz, 1 second)
        ├── tensor_000000.npy
        ├── tensor_000001.npy
        └── ...

Usage

  1. Launch: Run python skann_ssl_demo.py
  2. Select Clip: Use dropdown or click "🎲 Random"
  3. Classify: Click "🎯 CLASSIFY"
  4. Listen: Audio plays in loop (click "🔇 Stop" to mute)
  5. Review: Radar plot shows class probabilities

Model Performance

Metric Value
Silhouette Score 0.8299
Embedding Dimension 128
Vessel Classes 4
Sample Rate 16 kHz
Clip Duration 1 second

Frequency Coverage (SK Kernels)

Kernel Size Frequency Acoustic Phenomenon
1023 15+ Hz Shaft rate
511 31+ Hz Generator (25 Hz)
255 62+ Hz Generator (50 Hz)
127 125+ Hz Blade pass
63 250+ Hz Hull resonance
31 500+ Hz Cavitation

Troubleshooting

"sounddevice not installed"

pip install sounddevice

No audio output

  • Check system audio settings
  • Demo works without audio (visual classification still functional)

CUDA errors on CPU machine

  • The demo automatically handles CPU-only environments

Contact

For licensing, integration, or technical support:

Oravont Systems LLP


SKANN-SSL: Selective Kernel Audio Neural Networks with Self-Supervised Learning

About

Underwater Acoustic Vessel Classification Demo

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages