python==3.9
torch==2.0.1+cu118
numpy=1.19
opencv-python==4.9.0.80
pillow==10.2.0
PyYAML==6.0.1
pandas==2.2.2
Each image corresponds to one *.txt file, formatted as class x_center y_center width height.
path: ../datasets/data # dataset root dir
train: images/train # train images (relative to 'path') 2700 images
val: images/val # val images (relative to 'path') 300 images
test: #
# Classes
names:
0: gczywzqpdaqd
1: tszywrft
2: zyxckdwzg
3: wgfzz
4: kyhxcaqwl
-datasets/
-data/
-images/
-train/
-test/
-val/
-labels/
-train/
-test/
-val/
yolo detect train data=dianwang.yaml model=yolov10nx.yaml epochs=500 batch=256 imgsz=640 device=0
from ultralytics import YOLOv10
model = YOLOv10('yolov10x.pt')
model.train(data='dianwang.yaml', epochs=500, batch=16, imgsz=640, device=0)
from ultralytics import YOLO
model = YOLO('./runs/detect/train/weights/best.pt')
source = './datasets/data/images/val'
model.val(source=source)
from ultralytics import YOLOv10
# model = YOLOv10.from_pretrained('./yolov10x')
model = YOLOv10('./runs/detect/train/weights/best.pt')
source = './datasets/data/images/test'
model.predict(source=source, save=True, save_txt=True)