Udacity AI Programming with Python Nanodegree Image Classifier Project
- python3
- matplotlib
- numpy
- pillow
- PyTorch
- data_dir: Data Directory is expected to be in the structure defined by PyTorch ImageFolder
- --save_dir: The path to write the model checkpoint file to
- --arch: The architecture to use, check PyTorch torchvision.models for available options
- --learning_rate: The learning rate to be used in the code
- --hidden_units: The input values to be applied to the hidden layers
- --epochs: The number of times to train the classifier
- --gpu: Use this flag to run with gpu
python train.py /path/to/data/dir --save_dir /path/to/output/dir --arch vgg16 --learning_rate 0.001 --hidden_units 512 256 --epochs 3 --gpu
- image: The path to the image to predict an output for
- checkpoint: The path to the checkpoint file to read in classifier creation
- --top_k: The number of most likely classes to return
- --category_names: The path to the JSON file mapping categories to names
- --gpu: Use this flag to run with gpu
python predict.py /path/to/input/image /path/to/checkpoint/file.pth --top_k 5 --category_names /path/to/file.json --gpu