Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 16 additions & 16 deletions inst/stan/negBinomial_MPI.stan
Original file line number Diff line number Diff line change
Expand Up @@ -29,10 +29,10 @@ functions{
return log(gamma_rng(a, b));
}

vector[] get_reference_parameters_MPI(int n_shards, int M, int[] G_per_shard, int[,] G_ind, matrix lambda_log, vector sigma, vector exposure_rate){
array[] vector get_reference_parameters_MPI(int n_shards, int M, array[] int G_per_shard, array[,] int G_ind, matrix lambda_log, vector sigma, vector exposure_rate){

int S = rows(exposure_rate);
vector[(M*S) + M + S] lambda_sigma_exposure_MPI[n_shards];
array[n_shards] vector[(M*S) + M + S] lambda_sigma_exposure_MPI;

for( i in 1:n_shards ) {

Expand All @@ -55,7 +55,7 @@ functions{
return(lambda_sigma_exposure_MPI);
}

vector lp_reduce( vector global_parameters , vector local_parameters , real[] real_data , int[] int_data ) {
vector lp_reduce( vector global_parameters , vector local_parameters , array[] real real_data , array[] int int_data ) {

real lp;

Expand All @@ -64,13 +64,13 @@ functions{
int N = int_data[2];
int S = int_data[3];
int G_per_shard = int_data[4];
int symbol_end[M+1] = int_data[(4+1):(4+1+M)];
int sample_idx[N] = int_data[(4+1+M+1):(4+1+M+1+N-1)];
int counts[N] = int_data[(4+1+M+1+N-1+1):(4+1+M+1+N-1+N)];
array[M+1] int symbol_end = int_data[(4+1):(4+1+M)];
array[N] int sample_idx = int_data[(4+1+M+1):(4+1+M+1+N-1)];
array[N] int counts = int_data[(4+1+M+1+N-1+1):(4+1+M+1+N-1+N)];

// Data to exclude for outliers
int size_exclude = int_data[(4+1+M+1+N-1+N+1)];
int to_exclude[size_exclude] = int_data[(4+1+M+1+N-1+N+1+1):(4+1+M+1+N-1+N+1+size_exclude)]; // we are lucky for packaging it is the last variabe
array[size_exclude] int to_exclude = int_data[(4+1+M+1+N-1+N+1+1):(4+1+M+1+N-1+N+1+size_exclude)]; // we are lucky for packaging it is the last variabe

// Parameters unpack
vector[G_per_shard*S] lambda_MPI = local_parameters[1:(G_per_shard*S)];
Expand Down Expand Up @@ -147,15 +147,15 @@ data {
int<lower=0> G;
int<lower=0> S;
int n_shards;
int<lower=0> counts[n_shards, N];
int<lower=0> symbol_end[n_shards, M+1];
int<lower=0> G_ind[n_shards, M];
int<lower=0> sample_idx[n_shards, N];
int<lower=0> G_per_shard[n_shards];
int<lower=0> G_per_shard_idx[n_shards + 1];
array[n_shards, N] int<lower=0> counts;
array[n_shards, M+1] int<lower=0> symbol_end;
array[n_shards, M] int<lower=0> G_ind;
array[n_shards, N] int<lower=0> sample_idx;
array[n_shards] int<lower=0> G_per_shard;
array[n_shards + 1] int<lower=0> G_per_shard_idx;

int<lower=0> CP; // Counts package size
int<lower=0> counts_package[n_shards, CP];
array[n_shards, CP] int<lower=0> counts_package;

int<lower=1> C; // Covariates
matrix[S,C] X; // Design matrix
Expand All @@ -174,7 +174,7 @@ data {
transformed data {

vector[0] global_parameters;
real real_data[n_shards, 0];
array[n_shards, 0] real real_data;

}
parameters {
Expand Down Expand Up @@ -257,7 +257,7 @@ model {

}
generated quantities{
vector[how_many_to_check] counts_rng[S];
array[S] vector[how_many_to_check] counts_rng;

for(g in 1:how_many_to_check) for(s in 1:S)
// Make the overdispersion bigger making sigma smaller. Because inferring on truncated data with naive NB underestimate overdispersion
Expand Down