Professional AI-Powered System Monitor for Windows, macOS, and Linux
Features • Installation • Usage • Documentation • Screenshots
CorePulse is a production-grade system monitoring application that combines real-time performance tracking with AI-powered predictive analytics. Built with Python, FastAPI, and PyQt5, it delivers a modern, responsive interface for tracking CPU, RAM, disk, and network metrics across all major operating systems.
- 🎯 Predictive Analytics - TensorFlow-powered LSTM models forecast resource usage
- ⚡ Lightning Fast - Sub-100ms API response times with intelligent caching
- 🎨 Modern UI - Beautiful dark-themed interface with real-time graphs
- 🔒 Secure - Localhost-only API, zero external connections
- 🌍 Cross-Platform - One codebase, runs everywhere
- 📦 Standalone - Builds to native executables (no Python required)
- ✅ Real-Time Metrics - CPU, RAM, Disk, Network with 1-second refresh
- ✅ Live Graphs - Smooth, animated charts (2-minute rolling window)
- ✅ Process Tracking - Top resource consumers with sorting
- ✅ Thread Count - System-wide thread monitoring
- ✅ Historical Data - SQLite-backed data logging with auto-cleanup
- 🔮 ML Forecasting - LSTM-based predictions (10, 20, 30 minutes ahead)
- 📈 Trend Visualization - Dedicated prediction dashboard with gauges
- 🎯 Anomaly Detection - Smart alerts for unusual behavior
- 🔄 Auto-Training - Models retrain every 6 hours
- 🎨 Modern Design - Gradient cards, glassmorphism, smooth animations
- 🌙 Dark Theme - Eye-friendly interface
- ⚙️ Customizable - Configurable thresholds and settings
- 🔔 Smart Notifications - Cooldown-based alerts (no spam)
- 🚀 Hybrid Mode - Backend runs independently or with UI
- Python 3.8 or higher
- 500 MB free disk space
- 500 MB RAM minimum
# Clone the repository
git clone https://github.com/yourusername/CorePulse.git
cd CorePulse
# Create virtual environment
python -m venv venv
# Activate virtual environment
# On Linux/macOS:
source venv/bin/activate
# On Windows:
venv\Scripts\activate
# Install dependencies
pip install -r requirements.txt
# Run CorePulse
python run.pyThat's it! CorePulse will open automatically.
Option 1: Quick Start (Both Backend + UI)
python run.pyOption 2: 24/7 Monitoring (Recommended)
# Terminal 1: Start backend (keep running)
python start_backend.py
# Terminal 2: Launch UI (anytime)
python start_ui.pyOption 3: Standalone Executable
# Build first (one-time)
./build.sh # Linux/macOS
build.bat # Windows
# Run executable
./dist/CorePulse # No Python needed!- UI + Backend: Use
Ctrl+Qor File → Quit All - Backend Only:
python stop_backend.py
| Document | Description |
|---|---|
| USAGE.md | Detailed usage guide and hybrid mode |
| CROSS_PLATFORM.md | Platform-specific setup instructions |
| BUILD.md | Building executables for distribution |
┌─────────────────────────────────────────────────────────┐
│ Desktop UI (PyQt5) │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ Dashboard │ │ Live Graphs │ │ Predictions │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
└─────────────────────────────────────────────────────────┘
↕ HTTP
┌─────────────────────────────────────────────────────────┐
│ Backend API (FastAPI) │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │System Monitor│ │ ML Predictor│ │ Data Logger │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
└─────────────────────────────────────────────────────────┘
↕
┌─────────────────────────────────────────────────────────┐
│ Data Layer (SQLite + TensorFlow Models) │
└─────────────────────────────────────────────────────────┘
Technology Stack:
- Backend: FastAPI, psutil, TensorFlow, NumPy, Pandas
- Frontend: PyQt5, Matplotlib
- Database: SQLite
- ML: TensorFlow/Keras (LSTM networks)
- Build: PyInstaller
Main monitoring dashboard with live metrics
Real-time CPU and RAM graphs with 2-minute history
AI-powered usage forecasting with trend visualization
CorePulse/
├── backend/ # FastAPI server
│ ├── api/ # REST endpoints
│ └── services/ # Business logic
├── desktop/ # PyQt5 UI
│ └── widgets/ # UI components
├── data/ # SQLite database (runtime)
├── models/ # ML models (runtime)
└── dist/ # Built executables
# Backend
python -m pytest backend/tests/
# Integration
python -m pytest tests/# Linux/macOS
./build.sh
# Windows
build.batOutput:
- Linux:
dist/CorePulse - Windows:
dist/CorePulse.exe - macOS:
dist/CorePulse.app
Contributions are welcome! Please follow these steps:
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
- API Response Time: <100ms
- UI Refresh Rate: 1 second
- Memory Footprint: ~150-200 MB
- CPU Usage: <5% idle, <10% active
- Startup Time: 2-3 seconds
- ✅ Backend binds to
127.0.0.1(localhost only) - ✅ No external network connections
- ✅ No telemetry or data collection
- ✅ All data stored locally
This project is licensed under the MIT License - see the LICENSE file for details.
- FastAPI - Modern web framework
- PyQt5 - Powerful GUI framework
- TensorFlow - ML predictions
- psutil - System monitoring
- Issues: GitHub Issues
- Discussions: GitHub Discussions
⭐ Star this repo if you find it helpful!
Made with ❤️ by developers, for developers