Skip to content

This repository contains the computational tools for verifying the Riemann Hypothesis Short-Window Certificate with Explicit Constants. The code implements all numerical computations from the research paper, providing reproducible verification of key constants and bounds.

License

Notifications You must be signed in to change notification settings

specator-tlca/RN

Repository files navigation

RH Short-Window Certificate - Computational Framework

Overview

This repository contains the computational tools for verifying the Riemann Hypothesis Short-Window Certificate with Explicit Constants. The code implements all numerical computations from the research paper, providing reproducible verification of key constants and bounds.

Main document located at

"Riemann zeta – short-window certificate with explicit constants" miruka 2025

Key components:

  • C_right constant: Computing -ζ'(2)/ζ(2) via convergent prime series
  • C_thin measurement: Thin-strip approximation constants with explicit bounds
  • T0 threshold: Critical threshold for window certification
  • Horizontal validation: Phase difference bounds on horizontal segments

Mathematical Context

The short-window method establishes that for T ≥ T₀:

|ΔJ_L - π·ΔI(T;h)| < π/2

where:

  • Window height: h = c/log T
  • Strip width: δ = κ/log T
  • Threshold: log T₀ = (2c/π)(C_right + κ·C_thin*)

This ensures zero counting via the argument principle succeeds window by window.

Installation

Prerequisites

  • Python 3.8 or later
  • Windows, macOS, or Linux
  • Git (for cloning the repository)

Setup

  1. Clone the repository

    git clone https://github.com/specator-tlca/RH.git
    cd RH
  2. Create virtual environment

    python -m venv .venv
  3. Activate environment

    • Windows (PowerShell): .\.venv\Scripts\Activate.ps1
    • Windows (CMD): .\.venv\Scripts\activate.bat
    • Linux/macOS: source .venv/bin/activate
  4. Install dependencies

    pip install -r requirements.txt

Usage

Quick Start - Run All Verifications

python run_all.py

This executes the complete verification suite with optimized parameters and displays a summary report.

Individual Components

1. Compute C_right = -ζ'(2)/ζ(2)

python src/compute_C_right.py --P 1000000

# High precision computation
python src/compute_C_right.py --P 10000000

Options:

  • --P: Prime cutoff for truncated series (default: 2000000)

Output: Rigorous bounds [lower, upper] containing the true value

2. Measure C_thin* approximation constant

# Default parameters (c=0.25, κ=2.0, R0=0.125) 
python src/measure_Cthin_star.py

# Optimized parameters (recommended)
python src/measure_Cthin_star.py --c 0.35 --kappa 0.8 --R0 0.10

Options:

  • --c: Window scale parameter
  • --kappa: Strip scale parameter
  • --R0: Disc radius for truncation

Output: C_thin* value, margin analysis, and parameter recommendations

3. Compute T0 threshold

# Using default parameters
python src/threshold_T0.py

# Using optimized parameters
python src/threshold_T0.py --c 0.35 --kappa 0.8 --R0 0.10

Output: log T₀, T₀ value, and safety factor relative to T*

4. Validate horizontal bounds

python src/validate_horizontals.py --c 0.35 --kappa 0.8

Output: Bound verification and margin relative to π/2

Parameter Optimization

Find optimal trade-offs between safety margin and threshold height:

# Analyze current vs optimized parameters
python src/optimize.py --analyze

# Grid search with minimum margin constraint
python src/optimize.py --grid-search --min-margin 30

# Test specific parameter set
python src/optimize.py --test 0.35 0.8 0.10

View Results

Display summary of latest computation results:

python view_results.py

Output Structure

RH/
├── data/                    # Computational results
│   └── C_thin_hat_demo.csv  # Thin-strip measurements
├── logs/                    # Execution logs with timestamps
│   ├── compute_C_right_*.txt
│   ├── measure_Cthin_star_*.txt
│   ├── threshold_T0_*.txt
│   └── validate_horizontals_*.txt
└── src/                     # Source code
    ├── compute_C_right.py
    ├── measure_Cthin_star.py
    ├── threshold_T0.py
    ├── validate_horizontals.py
    └── optimize.py

Examples

Example 1: Complete verification with summary

$ python run_all.py

Running all scripts with optimized parameters...
============================================================
[1/4] Running compute_C_right.py...
[2/4] Running measure_Cthin_star.py...
[3/4] Running threshold_T0.py...
[4/4] Running validate_horizontals.py...

SUMMARY
============================================================
compute_C_right                OK
measure_Cthin_star             OK  
threshold_T0                   OK
validate_horizontals           OK

Key results:
- C_right in [0.569959993, 0.569979747]
- Margin: 44.5% (Status: OK)
- log T0 = 3.90, T0 = 4.94e+01
- Safety factor: 4.85e+10

Example 2: High-precision C_right computation

$ python src/compute_C_right.py --P 10000000

Computing C_right = -ζ'(2)/ζ(2) via convergent prime series...
Using primes up to P = 10000000
Found 664579 primes

Results:
--------
S(P) = 0.5699608571221895
Tail bound: [1.932701e-06, 1.934634e-06]
C_right in [0.569960857, 0.569962790]
Interval width = 1.932701e-06

Verification:
[OK] Theoretical value 0.569961813610 is within bounds

Example 3: Parameter analysis

$ python src/optimize.py --analyze

Parameter Analysis
==================
                Original    Optimized
Parameter       Value       Value
----------      --------    ---------
c               0.250       0.350
κ               2.000       0.800
R0              0.125       0.100

Results Comparison
==================
Metric          Original    Optimized
----------      --------    ---------
C_thin*         18.667      6.550
Margin          -7.0%       44.5%
log T0          6.03        3.90
T0              4.13e+02    4.94e+01
Status          FAIL        OK

RECOMMENDATION: Use optimized parameters for positive safety margin

Key Mathematical Results

Constants (Profile Parameters)

  • c = 0.35 (window scale)
  • κ = 0.8 (strip scale)
  • R₀ = 0.10 (disc radius)
  • c₁ = 2/3 (inner cut)
  • T* = 2.4 × 10¹²

Computed Values

  • C_right = -ζ'(2)/ζ(2) ≈ 0.569961813610
  • C_thin*(1/8) ≤ 56/3 (theoretical)
  • C_thin*(0.10) ≤ 6.550 (optimized)
  • α*(R₀) ≤ 27/164 + R₀ (boundary growth slope)

Threshold

  • log T₀ ≈ 3.90 (optimized)
  • T₀ ≈ 49.4
  • Safety factor: T*/T₀ > 10¹⁰

Technical Details

Dependencies

  • mpmath: Arbitrary precision arithmetic for rigorous bounds
  • numpy: Numerical computations and array operations
  • matplotlib: Visualization capabilities (future enhancement)

Computational Methods

  • Interval arithmetic: All bounds are rigorous with controlled rounding
  • Tail bounds: Explicit estimates for series truncation errors
  • Parameter validation: Automatic checking of mathematical constraints

Troubleshooting

Common Issues

  1. "Module not found" errors

    • Ensure virtual environment is activated
    • Run pip install -r requirements.txt again
  2. PowerShell execution policy (Windows)

    Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUser
  3. Memory issues for large P

    • Start with smaller values (P = 100000)
    • Close other applications
    • Consider using a machine with more RAM
  4. Negative margin warning

    • Use optimized parameters: --c 0.35 --kappa 0.8 --R0 0.10
    • Run python src/optimize.py to find suitable parameters

Contributing

Contributions are welcome! Please:

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes with clear commit messages
  4. Submit a pull request with description of changes

Citation

If you use this code in your research, please cite:

RH - Short-Window Certificate with Explicit Constants
miruka, August 2025
GitHub: https://github.com/specator-tlca/RN

About

This repository contains the computational tools for verifying the Riemann Hypothesis Short-Window Certificate with Explicit Constants. The code implements all numerical computations from the research paper, providing reproducible verification of key constants and bounds.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published