Skip to content

spatialreasoners/srmbench

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

28 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

SRM Benchmarks

PyPI version Python License: MIT Tests arXiv Project Page

Benchmark datasets and evaluation metrics for testing the understanding of complex spatial relationships in image generative models.

Based on the original implementation from the ICML 2025 paper: Spatial Reasoning with Denoising Models

Features:

  • Three challenging datasets (MNIST Sudoku, Even Pixels, Counting Objects)
  • Automated evaluation metrics for each dataset
  • Automatic dataset files and evaluation models download from Hugging Face
  • Each dataset implemented in a lazy-generation, low-data way (<3GB for all datasets+models)

SRM Benchmark Datasets

Table of Contents

Installation

From PyPI

pip install srmbench

From source

git clone https://github.com/spatialreasoners/srmbench.git
cd srmbench
pip install -e .

Development installation

git clone https://github.com/spatialreasoners/srmbench.git
cd srmbench
pip install -e ".[dev]"

Datasets

SRM Benchmarks provides three main datasets for evaluating spatial reasoning capabilities in generative models. Each dataset tests different aspects of spatial understanding and constraint satisfaction.

🧩 MNIST Sudoku

MNIST Sudoku Examples

Challenge: Inpaint the image by filling the missing cells with MNIST digits where no digit repeats in any row, column, or 3Γ—3 subgrid.

What the model needs to understand:

  • Digit recognition: Understanding and generating MNIST digits correctly [easy]
  • Spatial relationships: Row, column, and subgrid uniqueness [hard]

Dataset Details:

  • Image size: 252Γ—252 pixels (9Γ—9 grid of 28Γ—28 MNIST digits)
  • Format: Grayscale images with corresponding masks
  • Masks: Indicate which cells are given (white) vs. need to be filled (black)
  • Difficulty: Configurable via min_given_cells and max_given_cells parameters

Evaluation Metrics:

  • is_valid_sudoku: Boolean indicating valid Sudoku (no duplicates in any row/column/subgrid)
  • duplicate_count: Number of constraint violations (0 = perfect)

🎨 Even Pixels

Even Pixels Examples

Challenge: Generate images where exactly 50% of pixels are one color and 50% are another color, with uniform saturation and brightness.

What the model needs to understand:

  • Color choice: Choosing two colors that are opposite in the HSV color space [easy]
  • Pixel-level counting: Precise balance between two colors [hard]

Dataset Details:

  • Image size: 32Γ—32 pixels
  • Format: RGB images
  • Color constraint: There are two colors in the image (with opposite hue values), randomly positioned, but the count of pixels for each color is exactly 50% of the total number of pixels.

Evaluation Metrics:

  • color_imbalance_count: Deviation from perfect 50/50 split (0 = perfect)
  • is_color_count_even: Boolean for exact pixel balance (1.0 = perfect)
  • saturation_std: Standard deviation of saturation (should be ~0)
  • value_std: Standard deviation of brightness (should be ~0)

πŸ”’ Counting Objects

Counting Objects Examples

Challenge: Generate images with the number of objects (polygons or stars) where the displayed numbers match the actual object counts.

What the model needs to understand:

  • Consistency: All objects within an image have the same number of vertices (uniform constraint) [medium]
  • Matching numbers: The displayed numbers match the actual object counts and number of vertices [hard]

Dataset Details:

  • Image size: 128Γ—128 pixels
  • Format: RGB images with objects overlaid on FFHQ background faces
  • Variants:
    • Polygons: 3-7 sided polygons
    • Stars: 2-9 pointed stars
  • Numbers: Optional overlay showing object counts (via are_nums_on_images parameter)

Evaluation Metrics:

  • are_vertices_uniform: Fraction where all objects have same vertex count
  • numbers_match_objects: Fraction where displayed numbers match actual counts
  • Additional, optional metrics:
    • relative_vertex_count_N: Fraction of images with N-vertex objects (Can show biases when averaged over larger number of images)
    • relative_polygons_count_N: Fraction of images with N objects (Can show biases when averaged over larger number of images)

Quick Start

1. MNIST Sudoku Dataset

Training (Load Dataset):

import torch
from torch.utils.data import DataLoader
from torchvision.transforms import v2 as transforms
from srmbench.datasets import MnistSudokuDataset

# Define transforms for images and masks
image_mask_transform = transforms.Compose([
    transforms.ToImage(),
    transforms.ToDtype(torch.float32, scale=True),  # Scales from [0,255] to [0,1]
])

# Create dataset with transforms
dataset = MnistSudokuDataset(
    stage="train",  # or "test"
    transform=image_mask_transform,
    mask_transform=image_mask_transform
)

# Create DataLoader
dataloader = DataLoader(
    dataset,
    batch_size=8,
    shuffle=True,
    num_workers=4,
)

# Training loop
for images, masks in dataloader:
    # Apply mask and train your model to reconstruct
    # masked_images = images * masks  # Keep given cells
    # reconstructed = your_model_inpainting_function(masked_images, masks)
    # loss = loss_fn(reconstructed, images)
    pass

Evaluation:

from srmbench.evaluations import MnistSudokuEvaluation

evaluation = MnistSudokuEvaluation()

# Evaluate your model's generated images
for images, masks in dataloader:
    masked_images = images * masks
    
    generated_images = your_model_inpainting_function(masked_images, masks)
    results = evaluation.evaluate(generated_images)
    
    print(f"Valid Sudoku: {results['is_valid_sudoku'].float().mean():.2%}")
    print(f"Avg Duplicate Count: {results['duplicate_count'].float().mean():.2f}")

2. Even Pixels Dataset

Training (Load Dataset):

import torch
from torch.utils.data import DataLoader
from torchvision.transforms import v2 as transforms
from srmbench.datasets import EvenPixelsDataset

# Define transform: PIL RGB (H, W, 3) -> Tensor (3, H, W) in [-1, 1]
transform = transforms.Compose([
    transforms.ToImage(),
    transforms.ToDtype(torch.float32, scale=True),  # Scales from [0,255] to [0,1]
    transforms.Lambda(lambda x: x * 2.0 - 1.0),      # Normalize to [-1,1]
])

# Create dataset with transforms
dataset = EvenPixelsDataset(stage="train", transform=transform)  # or "test"

# Create DataLoader
dataloader = DataLoader(
    dataset,
    batch_size=8,
    shuffle=True,
    num_workers=4,
)

# Training loop
for images in dataloader:
    # Train your generative model
    # generated = model(noise)
    # loss = loss_fn(generated, images)
    pass

Evaluation:

from srmbench.evaluations import EvenPixelsEvaluation

evaluation = EvenPixelsEvaluation()

# Generate and evaluate images from your model
images_batch = your_model_generation_function(batch_size=8)
results = evaluation.evaluate(images_batch)

print(f"Saturation STD: {results['saturation_std']:.4f}")
print(f"Value STD: {results['value_std']:.4f}")
print(f"Color Imbalance: {results['color_imbalance_count']:.0f} pixels")
print(f"Perfect Balance: {results['is_color_count_even']:.2%}")

3. Counting Objects Dataset

Training (Load Dataset):

import torch
from torch.utils.data import DataLoader
from torchvision.transforms import v2 as transforms
from srmbench.datasets import CountingObjectsFFHQ

# Define transform: PIL RGB (H, W, 3) -> Tensor (3, H, W) in [-1, 1]
transform = transforms.Compose([
    transforms.ToImage(),
    transforms.ToDtype(torch.float32, scale=True),  # Scales from [0,255] to [0,1]
    transforms.Lambda(lambda x: x * 2.0 - 1.0),      # Normalize to [-1,1]
])

# Create dataset with transforms (polygons or stars variant)
dataset = CountingObjectsFFHQ(
    stage="train",  # or "test"
    object_variant="polygons",  # or "stars"
    transform=transform,
)

# Create DataLoader
dataloader = DataLoader(
    dataset,
    batch_size=8,
    shuffle=True,
    num_workers=4,
)

# Training loop
for images in dataloader:
    # Train your generative model
    # generated = model(noise)
    # loss = loss_fn(generated, images)
    pass

Evaluation:

from srmbench.evaluations import CountingObjectsEvaluation

# Set device="cpu" if no GPU available
evaluation = CountingObjectsEvaluation(object_variant="polygons", device="cpu")

# Generate and evaluate images from your model
images_batch = your_model_generation_function(batch_size=8)
results = evaluation.evaluate(images_batch, include_counts=True)

print(f"Vertices Uniform: {results['are_vertices_uniform']:.2%}")
print(f"Numbers Match Objects: {results['numbers_match_objects']:.2%}")

The basic examples in runnable variants are available in the examples directory.

python examples/mnist_sudoku_example.py
python examples/even_pixels_example.py
python examples/counting_objects_example.py

License

This project's code is licensed under the MIT License - see the LICENSE file for details. The benchmark datasets included in this package are subject to their respective licenses:

MNIST Sudoku Dataset

Counting Objects Dataset

Note: When using this package, please ensure compliance with the respective dataset licenses, particularly for commercial use. The FFHQ dataset is generally restricted to non-commercial purposes under the CC BY-NC-SA 4.0 license.

Running tests

pytest

Citation

If you use this package in your research, please cite:

@inproceedings{wewer25srm,
  title     = {Spatial Reasoning with Denoising Models},
  author    = {Wewer, Christopher and Pogodzinski, Bartlomiej and Schiele, Bernt and Lenssen, Jan Eric},
  booktitle = {International Conference on Machine Learning ({ICML})},
  year      = {2025},
}

About

Benchmarks for generative models from [ICML2025] "Spatial Reasoning with Denoising Models"

Topics

Resources

License

Stars

Watchers

Forks