Skip to content

softwarecomputationalbiologyufpa/gcsplit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GCSplit

Data partitioning algorithm for reduction of complexity and improvement of metagenomic assemblies.

Installation

To clone the repository, type git clone https://github.com/mirand863/gcsplit.git

To install GCSplit and its dependencies, type cd gcsplit, bash install.sh and source ~/.bashrc

Running

To see the usage just type gcsplit

GCSplit v1.2

A software to partition paired FASTQ files

Usage: gcsplit [options] -o <output_dir> 

Basic options:
    -o/--output <output_dir>    Folder to store all the files generated during the assembly (required).
    -p/--partitions <int>       Number of partitions [default: 16]
    -w/--whole                  Use whole dataset to merge [default: off]
    --iontorrent                This flag is required for IonTorrent data.
    -h/--help                   Prints this usage message.
    -v/--version                Prints version info

Input data:
    -f/--forward <filename>     File with forward paired-end reads.
    -r/--reverse <filename>     File with reverse paired-end reads.
    -s/--single <filename>      File with unpaired reads.

Advanced options:
    -t/--threads <int>          Number of threads [default: 4]
    -k/--kmers <int>            Number of kmers to run the assembly [default: 3]
    -m/--memory <int>           Set memory limit for SPAdes in Gb [default: 250]
    --only-assembler            Runs SPAdes on assembly mode only

Please, report bugs to: miranda.fmm@gmail.com
Software homepage: <https://github.com/mirand863/gcsplit>

Citation

If you use GCSplit, please cite:

Miranda F., Batista C., Silva A., Morais J., Neto N., Ramos R. (2018) Improving Metagenomic Assemblies Through Data Partitioning: A GC Content Approach. In: Rojas I., Ortuño F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2018. Lecture Notes in Computer Science, vol 10813. Springer, Cham.

@inproceedings{miranda2018gcsplit,
  author="Miranda, F{\'a}bio and Batista, Cassio and Silva, Artur and Morais, Jefferson and Neto, Nelson and Ramos, Rommel",
  editor="Rojas, Ignacio and Ortu{\~{n}}o, Francisco",
  title="Improving Metagenomic Assemblies Through Data Partitioning: A GC Content Approach",
  booktitle="Bioinformatics and Biomedical Engineering",
  year="2018",
  publisher="Springer International Publishing",
  address="Cham",
  pages="415--425",
  doi={10.1007/978-3-319-78723-7_36},
  url={https://doi.org/10.1007/978-3-319-78723-7_36},
  isbn="978-3-319-78723-7"
}

About

Data partitioning algorithm for reduction of complexity and improvement of genomic and metagenomic assemblies.

Resources

License

Stars

Watchers

Forks

Packages

No packages published