Agentic_AI is a multi-agent orchestration framework powered by LangChain + LangGraph + MCP and accelerated by Groq (LLaMA-3-70B).
It integrates specialized tools like Math, Translation, Gmail, Weather, Web Search, and features memory persistence with FAISS embeddings.
🎥 Demo GIF or screenshot placeholder
(Add a quick terminal demo GIF using asciinema or a screenshot of agents collaborating.)
Here’s how the system is designed:
graph TB
User[👤 User Input] --> IntentRouter{🎯 Intent-Based<br/>Router}
IntentRouter -->|Conversational| DirectAgent[💬 Direct Response<br/>Agent]
IntentRouter -->|Task-Based| Planner[📋 Task Planner<br/>LLaMA-3.1-8B]
Planner -->|JSON Plan| Executor[⚙️ Plan Executor<br/>LLaMA-3.1-8B]
Executor --> Tools[🛠️ MCP Tool Suite]
Tools --> Math[🧮 Math Server<br/>stdio]
Tools --> Translate[🌍 Translator<br/>stdio]
Tools --> Gmail[📧 Gmail API<br/>stdio]
Tools --> WebSearch[🔍 Web Search<br/>stdio]
Tools --> Weather[🌦️ Weather<br/>HTTP]
Executor -->|Results| Verifier{✅ Rule-Based<br/>Verifier}
Verifier -->|PASS| FinalAnswer[📤 Final Answer]
Verifier -->|RETRY<br/>Max 2x| Executor
Verifier -->|FAIL| ErrorHandler[❌ Error Handler]
DirectAgent --> Memory[(🧠 FAISS Vector DB<br/>HuggingFace Embeddings)]
Executor --> Memory
Memory -->|Top 3 Context| Executor
Memory -->|Context| DirectAgent
FinalAnswer --> User
DirectAgent --> User
ErrorHandler --> User
subgraph "🌐 Web Interface"
API[FastAPI Server<br/>CORS Enabled]
end
User -.->|HTTP| API
API -.-> IntentRouter
style IntentRouter fill:#ff9999
style Planner fill:#99ccff
style Executor fill:#99ccff
style Verifier fill:#99ff99
style Memory fill:#ffcc99
style Tools fill:#e6b3ff
Intent-Based Query Routing: Automatically detects conversational vs. task-based queries, bypassing unnecessary tool planning for greetings and casual chat for more natural interactions
Plan-Verify-Execute Architecture: Sophisticated 3-stage pipeline with Planner (breaks complex tasks into JSON plans), Executor (executes steps with context), and Verifier (validates outputs with smart retry logic)
Smart Rule-Based Verification: Multi-layer validation including step count validation, tool compliance checking, goal satisfaction analysis, freshness detection for news queries, and generic failure detection
Adaptive Retry Mechanism: Self-correcting system with up to 2 retries, providing specific retry hints to executors for automatic error recovery without user intervention
⚡ Fast & Scalable: Powered by Groq's LLM for blazing fast inference
🧮 Math Agent: Handles calculations & symbolic tasks
🌍 Translator Agent: Supports multilingual conversations
📧 Gmail Agent: Reads & interacts with Gmail API
🔍 Web Search Agent: Searches online data for better answers
🌦️ Weather Agent: Provides current weather, air quality, and environmental reports
Multi-Transport MCP Integration: Supports multiple MCP servers with stdio and streamable_http transports for mixing local and remote tools seamlessly
Persistent Conversational Memory: FAISS vector database with HuggingFace embeddings stores and retrieves conversation context semantically
Context-Aware Responses: Retrieves top 3 relevant past interactions for maintaining conversation continuity
Cross-Session Memory: Maintains conversation history across sessions with persistent storage
🧹 Memory Reset: Use clear to reset past memory when needed
Web Interface Ready: FastAPI integration with CORS support for web deployment and frontend interfaces
RESTful API: Production-ready API endpoints for chat interactions
Agentic_AI/
├── main.py # Main entry point
├── mathserver.py # Math agent (MCP)
├── translate.py # Translator agent (MCP)
├── websearch.py # Web search agent
├── gmail.py # Gmail integration
├── rag_model.py # Optional RAG pipeline
├── mcp_use.py # MCP agent utilities
├── requirements.txt # Dependencies
├── .env # API keys & config
└── README.md # This file
1️⃣ Clone the repository git clone https://github.com/sobhan2204/Agentic_AI.git cd Agentic_AI
2️⃣ Setup environment python3.10 -m venv venv source venv/bin/activate pip install -r requirements.txt
3️⃣ Configure .env GROQ_API_KEY=your_api_key_here HF_TOKEN=your_huggingface_token_here (Optional: add Gmail API credentials if using Gmail Agent)
4️⃣ Run the agent python main.py
Add finance/news/calendar agents
Memory expiration + relevance scoring
Web dashboard UI for interactions
Dockerized deployment
LangChain + LangGraph + MCP – multi-agent orchestration
Groq (LLaMA-3-70B) – blazing fast inference
FAISS + HuggingFace embeddings – vector memory store
Python 3.10+ – backend
##💡 Contributions are welcome!
Fork the repo & create a feature branch
Submit a PR with clear description
For new MCP agents, follow modular design