πΉ A Machine Learning project to detect defects in steel plates.
πΉ Dataset: Steel Plate Faults (UCI Repository).
πΉ Models used: Logistic Regression, Decision Tree, Random Forest, SVM.
πΉ Best Accuracy: Random Forest (~94%).
- Python, Pandas, NumPy
- Matplotlib, Seaborn
- Scikit-learn
git clone https://github.com/sneha842/Steel-Plate-Defect-Prediction-Project.git
cd Steel-Plate-Defect-Prediction-Project
pip install -r requirements.txt
jupyter notebook
## π Results
- **Logistic Regression** β Accuracy ~ 82%
- **Decision Tree** β Accuracy ~ 88%
- **Random Forest** β Accuracy ~ 94% (Best)
- **SVM** β Accuracy ~ 90%
β
Random Forest performed the best for defect classification.