-
Notifications
You must be signed in to change notification settings - Fork 0
API
Module containing methods for training statistical survival models using Lyman continuum observations to predict Lyman continuum escape fractions
- LyCsurv.AFT(dat, resp='f_esc(LyC)', verbose=False, intercept=True, StatsVerbose=False)
-
- Name:
-
AFT
- Purpose:
-
Perform parametric survival regression using the Accelerated Failure method assuming a generic Weibull distribution.
- Arguments:
-
- dat (pandas.DataFrame):
-
pandas DataFrame containing columns named according to conventions in params.lis with values corresponding to the galaxy sample which the user desires to fit
- Keyword Arguments:
-
- resp (str):
-
string indicating the desired response variable. Options are ‘f_esc(LyC)’, ‘f_esc(LyA)’, ‘f(LyC)’, and ‘f(LyA)’. Default is ‘f_esc(LyC)’.
- verbose (bool):
-
boolean indicating whether to print out details of the accelerated failure regression. Default is False.
- intercept (bool):
-
boolean indicating whether to include an intercept in the parametric hazard function
- StatsVerbose (bool):
-
boolean indicating whether to perform and return statistical assessments of the model using the training set. Default is False.
- Returns:
-
- aft_fit (np.ndarray):
-
n by 3 array containing the median, lower and upper uncertainties corresponding to 0.16 and 0.84 quantiles
- ModAssess (tuple):
-
(_optional_) 4x1 tuple of model assessments containing the R^2, adjusted R^2, RMS, and concordance index. Only returned if StatsVerbose set to True.
- LyCsurv.CoxPH(dat, resp='f_esc(LyC)', verbose=False, StatsVerbose=False)
-
- Name:
-
CoxPH
- Purpose:
-
Perform a Cox proportional hazards regression on the input reference data
- Arguments:
-
- dat (pandas.DataFrame):
-
pandas DataFrame containing columns named according to conventions in params.lis with values corresponding to the galaxy sample which the user desires to fit
- Keyword Arguments:
-
- resp (str):
-
string indicating the desired response variable. Options are ‘f_esc(LyC)’, ‘f_esc(LyA)’, ‘f(LyC)’, and ‘f(LyA)’. Default is ‘f_esc(LyC)’.
- verbose (bool):
-
boolean indicating whether to print out details of the Cox proportional hazards regression. Default is False.
- StatsVerbose (bool):
-
boolean indicating whether to perform and return statistical assessments of the model using the training set. Default is False.
- Returns:
-
- cph_fit (numpy.ndarray):
-
n by 4 array containing the median, lower and upper uncertainties corresponding to 0.16 and 0.84 quantiles, and an indicator of whether the survival function is always below (-1) or above (+1) the median of the predicted distribution
- ModAssess (tuple):
-
(_optional_) 4x1 tuple of model assessments containing the R^2, adjusted R^2, RMS, and concordance index. Only returned if StatsVerbose set to True.
- LyCsurv.InterpPH(dat, part, base)
-
- Name:
-
InterpPH
- Purpose:
-
Interpolate over the survival function for each input observation to predict the appropriate escape fraction.
- Arugments:
-
- dat (pandas.DataFrame):
-
pandas DataFrame of observables used to train model
- part (**):
-
Cox partial proportional hazard values for survival function
- base (**):
-
predicted response corresponding to full range of observations
- Returns:
-
- predict (np.ndarray):
-
Nx3 array of response values predicted by the Cox PH model. First row is the lower uncertainty. Middle row is the median. Last row is the upper uncertainty.
- LyCsurv.ModAssess(trn, mod, cens, concord='harrell')
-
- Name:
-
ModAssess
- Purpose:
-
Assess the quality of a survival model by testing it against the training data set (in this case, the LzLCS).
- Arguments:
-
- trn (np.ndarray):
-
Nx1 array of observed values
- mod (np.ndarray):
-
Nx1 array of predicted values
- cens (np.ndarray):
-
Nx1 array of censors as booleans
- Keyword Arguments:
-
- concord (str):
-
string indicating the method to use for concordance calculation. Currently supports Harrell+ 1996 and Uno+ 2011 methods. Default is ‘harrell’.
- Returns:
-
- R2 (float):
-
R^2 metric of the residuals
- R2a (float):
-
adjusted R^2 metric of the residuals
- RMS (float):
-
root-mean-square of the residuals
- C (float):
-
concordance index
Bases: object
- Name:
-
Train
- Purpose:
-
Train a specified survival model on reference data and assess the results.
- Keyword Arguments:
-
- resp (str):
-
string indicating the desired response variable. Options are ‘f_esc(LyC)’, ‘f_esc(LyA)’, ‘f(LyC)’, and ‘f(LyA)’. Default is ‘f_esc(LyC)’.
- method (str):
-
string indicating the method of survival analysis to be used in the training run: ‘CoxPH’ or ‘AFT’. Default is ‘CoxPH’.
- Attributes:
-
- train (numpy.ndarray):
-
88x2 array containing the observed and predicted response variable
- stats (tuple):
-
(_optional_) 4x1 tuple of model assessments containing the R^2, adjusted R^2, RMS, and concordance index. Only returned if StatsVerbose set to True.
- resp (str):
-
response variable (corresponds to resp input)
- meth (str):
-
method used for training (corresponds to method input)