This repository contains an interactive Pizza Sales Dashboard built using Power BI by Sawaira.
It provides deep insights into pizza sales performance, customer behavior, busiest days, best/worst sellers, and trends through both Power BI visuals and SQL queries.
| File Name | Description |
|---|---|
Pizza Sales Report.pbix |
Power BI dashboard project file |
pizza_sales.csv |
Raw dataset used for building the dashboard |
PIZZA SALES SQL Steps.docx |
Documented SQL queries and DAX steps |
Home.JPG |
Dashboard Home Page preview |
BestWorstSellers.JPG |
Dashboard Best/Worst Sellers preview |
-
π KPI Tiles:
- πΉ Total Revenue:
817K - πΉ Total Orders:
21K - πΉ Total Pizzas Sold:
49K - πΉ Avg Order Value:
38 - πΉ Avg Pizzas per Order:
2.3
- πΉ Total Revenue:
-
π Visual Insights:
- Top 5 & Bottom 5 Pizzas by Revenue, Quantity, and Orders
- Daily Trends for Total Orders (MonβSun)
- Monthly Trends for Orders (JanβDec)
- % Sales by Pizza Category & Size
-
π― Best/Worst Sellers Analysis:
- Highlights pizzas generating the maximum and minimum revenue, quantity, and orders.
-
π SQL Integration:
- KPIs and trends calculated using SQL queries for validation alongside Power BI.
- Bar Charts β Top/Bottom Pizza by Sales, Daily/Monthly Orders
- Line Charts β Monthly Trends
- Donut Charts β % Sales by Category & Size
- KPI Cards β Core business metrics
- Text Cards β Business Insights (Best/Worst sellers, busiest days/months)
- Power BI Desktop
- SQL (PostgreSQL)
- CSV Dataset
- DAX Measures
- Data Transformation & Modeling
To explore the dashboard:
- Download the
.pbixfile from this repo. - Open in Power BI Desktop.
- Review KPIs, slicers (Category, Date), and dynamic visuals.
- Use provided SQL queries for validation or database integration.
This project is ideal for:
- Portfolio building for Data Analysts / BI Developers
- Demonstrating SQL + Power BI integration
- Business stakeholders tracking product sales, seasonal patterns, and top-performing pizzas
The following calculated columns and measures were created in Power BI using DAX:
-- 3οΈβ£ New Column: Order Day
order_day =
FORMAT(DATEVALUE([order_date]), "dddd")
-- 4οΈβ£ KPI: Total Revenue
Total revenue =
SUM('pizza_sales'[total_price])
-- 5οΈβ£ KPI: Total Orders
Total Orders =
DISTINCTCOUNT('pizza_sales'[order_id])
-- 6οΈβ£ KPI: Average Order Value
Avg Order Value =
[Total revenue] / [Total Orders]
-- 7οΈβ£ KPI: Total Pizzas Sold
Total Pizzas Sold =
SUM('pizza_sales'[quantity])
-- 8οΈβ£ KPI: Average Pizzas per Order
Avg Pizza per order =
[Total Pizzas Sold] / [Total Orders]
-- 9οΈβ£ New Column: Order Day Number (1 = Monday, 7 = Sunday)
order_day_num =
WEEKDAY(DATEVALUE([order_date]), 2)
-- π New Column: Month Name (short form)
Month_Name =
FORMAT([order_date], "MMM")
-- 1οΈβ£1οΈβ£ New Column: Month Number (1β12)
Month_Num =
MONTH([order_date])
---
## π©βπ» Author
**Sawaira Iqbal**
> Power BI & SQL Developer | Data Visualization Enthusiast
> _Crafted with π + π to turn raw data into actionable insights_
---
β *If you found this project useful, donβt forget to give it a star!*