Open World Recognition in Image Classification project for Machine Learning and Deep Learning course's assignment - PoliTO
- Finetuning
- Learning without forgetting (usage of distillation loss)
- iCarl (distillation + exemplars)
- Classifiers
- Nearest Mean Exemplars (iCaRL standard) baseline
- Fully connected layer
- KNN
- Cosine Layer + losses as detailed in
Learning a Unified Classifier Incrementally via Rebalancing by Hue et all
- Losses (classification + distillation)
- iCaRL (BCE + lfc) baseline
- BCE + L1
- BCE + L2
- CE + L1
- CE + L2
- Call the constructor
Cifar100Dataset('split', transform) - For each seed's iteration:
- Call the function
.define_splits(seed)
- Call the function
- For each split's iteration:
- Call
.change_subclasses(iteration)to select the list of 10 classes - Call
.get_imgs_by_target()to retrieve all the images belonging to the 10 classes above, ready to fill the pytorchSubset.
- Call






