Skip to content

roe-ai/roe-python

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Roe AI Python SDK

A Python SDK for the Roe AI API.

Installation

uv add roe-ai

Quick Start

from roe import RoeClient

client = RoeClient(
    api_key="your-api-key",
    organization_id="your-org-uuid"
)

# Run an existing agent
job = client.agents.run(agent_id="agent-uuid", text="Analyze this text")
result = job.wait()

for output in result.outputs:
    print(f"{output.key}: {output.value}")

Or set environment variables:

export ROE_ORGANIZATION_API_KEY="your-api-key"
export ROE_ORGANIZATION_ID="your-org-uuid"

Agent Examples

Multimodal Extraction

Extract structured data from text and images:

agent = client.agents.create(
    name="Listing Analyzer",
    engine_class_id="MultimodalExtractionEngine",
    input_definitions=[
        {"key": "text", "data_type": "text/plain", "description": "Item description"},
    ],
    engine_config={
        "model": "gpt-4.1-2025-04-14",
        "text": "${text}",
        "instruction": "Analyze this product listing. Is it counterfeit?",
        "output_schema": {
            "type": "object",
            "properties": {
                "is_counterfeit": {"type": "boolean", "description": "Whether likely counterfeit"},
                "confidence": {"type": "number", "description": "Confidence score 0-1"},
                "reasoning": {"type": "string", "description": "Explanation"},
            }
        }
    }
)

job = client.agents.run(
    agent_id=str(agent.id),
    text="Authentic Louis Vuitton bag, brand new, $50"
)
result = job.wait()

Document Insights

Extract structured information from PDFs:

agent = client.agents.create(
    name="Resume Parser",
    engine_class_id="PDFExtractionEngine",
    input_definitions=[
        {"key": "pdf_files", "data_type": "application/pdf", "description": "Resume PDF"},
    ],
    engine_config={
        "model": "gpt-4.1-2025-04-14",
        "pdf_files": "${pdf_files}",
        "instructions": "Extract candidate information from this resume.",
        "output_schema": {
            "type": "object",
            "properties": {
                "name": {"type": "string"},
                "email": {"type": "string"},
                "skills": {"type": "array", "items": {"type": "string"}},
            }
        }
    }
)

job = client.agents.run(agent_id=str(agent.id), pdf_files="resume.pdf")
result = job.wait()

Web Insights

Extract data from websites with automatic screenshot/HTML/markdown capture:

agent = client.agents.create(
    name="Company Analyzer",
    engine_class_id="URLWebsiteExtractionEngine",
    input_definitions=[
        {"key": "url", "data_type": "text/plain", "description": "Website URL"},
    ],
    engine_config={
        "url": "${url}",
        "model": "gpt-4.1-2025-04-14",
        "instruction": "Extract company information from this website.",
        "vision_mode": False,
        "crawl_config": {
            "save_html": True,
            "save_markdown": True,
            "save_screenshot": True,
        },
        "output_schema": {
            "type": "object",
            "properties": {
                "company_name": {"type": "string"},
                "description": {"type": "string"},
                "products": {"type": "array", "items": {"type": "string"}},
            }
        }
    }
)

# Run the agent
job = client.agents.run(agent_id=str(agent.id), url="https://www.roe-ai.com/")
result = job.wait()

# Download saved references (screenshots, HTML, markdown)
for ref in result.get_references():
    content = client.agents.jobs.download_reference(str(job.id), ref.resource_id)
    with open(ref.resource_id, "wb") as f:
        f.write(content)

Interactive Web

Navigate websites and perform actions:

agent = client.agents.create(
    name="Meeting Booker",
    engine_class_id="InteractiveWebExtractionEngine",
    input_definitions=[
        {"key": "url", "data_type": "text/plain", "description": "Website URL"},
        {"key": "action", "data_type": "text/plain", "description": "Action to perform"},
    ],
    engine_config={
        "url": "${url}",
        "action": "${action}",
        "output_schema": {
            "type": "object",
            "properties": {
                "calendar_link": {"type": "string", "description": "Booking link found"},
                "steps_taken": {"type": "array", "items": {"type": "string"}},
            }
        }
    }
)

job = client.agents.run(
    agent_id=str(agent.id),
    url="https://www.roe-ai.com/",
    action="Find the founder's calendar link to book a meeting"
)
result = job.wait()

Running Agents

# Async (recommended)
job = client.agents.run(agent_id="uuid", text="input")
result = job.wait()

# Sync
outputs = client.agents.run_sync(agent_id="uuid", text="input")

# With files (auto-uploaded)
job = client.agents.run(agent_id="uuid", document="file.pdf")

# Batch processing
batch = client.agents.run_many(
    agent_id="uuid",
    batch_inputs=[{"text": "input1"}, {"text": "input2"}]
)
results = batch.wait()

Agent Management

# List / Retrieve
agents = client.agents.list()
agent = client.agents.retrieve("uuid")

# Update / Delete
client.agents.update("uuid", name="New Name")
client.agents.delete("uuid")

# Duplicate
new_agent = client.agents.duplicate("uuid")

Version Management

# List and retrieve versions
versions = client.agents.versions.list("agent-uuid")
current = client.agents.versions.retrieve_current("agent-uuid")
version = client.agents.versions.retrieve("agent-uuid", "version-uuid")

# Create, update, delete versions
version = client.agents.versions.create(
    agent_id="agent-uuid",
    version_name="v2",
    input_definitions=[...],
    engine_config={...}
)

client.agents.versions.update("agent-uuid", "version-uuid", version_name="v2-updated")
client.agents.versions.delete("agent-uuid", "version-uuid")

# Run specific versions
job = client.agents.run_version("agent-uuid", "version-uuid", text="input")
result = job.wait()

Job Management

# Retrieve job status and results
status = client.agents.jobs.retrieve_status(job_id)
result = client.agents.jobs.retrieve_result(job_id)

# Batch operations
statuses = client.agents.jobs.retrieve_status_many([job_id1, job_id2])
results = client.agents.jobs.retrieve_result_many([job_id1, job_id2])

# Download references from jobs (screenshots, HTML, markdown)
content = client.agents.jobs.download_reference(job_id, resource_id)

# Delete job data
client.agents.jobs.delete_data(job_id)

Supported Models

Model Value
GPT-5.1 gpt-5.1-2025-11-13
GPT-5 gpt-5-2025-08-07
GPT-5 Mini gpt-5-mini-2025-08-07
GPT-4.1 gpt-4.1-2025-04-14
GPT-4.1 Mini gpt-4.1-mini-2025-04-14
O3 Pro o3-pro-2025-06-10
O3 o3-2025-04-16
O4 Mini o4-mini-2025-04-16
GPT-4o gpt-4o-2024-11-20
Claude Sonnet 4.5 claude-sonnet-4-5-20250929
Claude Sonnet 4 claude-sonnet-4-20250514
Claude 3.7 Sonnet claude-3-7-sonnet-20250219
Claude Haiku 4.5 claude-haiku-4-5-20251001
Claude 3.5 Haiku claude-3-5-haiku-20241022
Claude Opus 4.5 claude-opus-4-5-20251101
Claude Opus 4.1 claude-opus-4-1-20250805
Claude Opus 4 claude-opus-4-20250514
Gemini 3 Pro gemini-3-pro-preview
Gemini 2.5 Pro gemini-2.5-pro
Gemini 2.5 Flash gemini-2.5-flash

Engine Classes

Engine ID
Multimodal Extraction MultimodalExtractionEngine
Document Insights PDFExtractionEngine
Document Segmentation PDFPageSelectionEngine
Web Insights URLWebsiteExtractionEngine
Interactive Web InteractiveWebExtractionEngine
Web Search URLFinderEngine
Perplexity Search PerplexitySearchEngine
Maps Search GoogleMapsEntityExtractionEngine
Merchant Risk MerchantRiskAnalysisEngine
Product Policy ProductPolicyEngine
LinkedIn Crawler LinkedInScraperEngine
Social Media SocialScraperEngine

Links

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages