Skip to content

rishika638/Real-Time-Object-Detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

64 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸš€ Real-Time Object Detection Web App (YOLOv5 + Streamlit)

πŸ“· Upload an image β†’ 🧠 YOLOv5 detects objects β†’ 🌐 View results in your browser

✨ Project Highlights

  • πŸ” Object detection using pre-trained YOLOv5
  • πŸ–ΌοΈ Upload .jpg/.jpeg/.png images via a Streamlit web app
  • πŸ’‘ Instantly displays bounding boxes, labels, and confidence scores
  • 🌐 Hosted on localhost for easy local testing

🧠 Tech Stack

Tool Purpose
Python Programming Language
PyTorch Loads the YOLOv5 model
OpenCV Image reading and decoding
NumPy Array and tensor operations
Streamlit Web UI for file upload and display

πŸš€ Quickstart Guide

πŸ”§ 1. Clone the Repo git clone https://github.com/yourusername/rtod-yolov5.git cd rtod-yolov5

🌱 2. Create a Virtual Environment python -m venv yolov5env yolov5env\Scripts\activate # (Windows CMD)

πŸ“¦ 3. Install Dependencies pip install streamlit opencv-python torch torchvision torchaudio numpy seaborn

πŸš€ 4. Run the App streamlit run app.py Then open http://localhost:8501 in your browser πŸš€

πŸ”§ Known Limitations & Future Fixes

🚌 Sometimes detects a bus as a car (common in COCO dataset confusion)

⚑ Not yet optimized for performance or large resolution images

πŸ§ͺ YOLOv5s is the lightest model β€” might upgrade to yolov5m or yolov5x later

πŸ‘·β€β™€οΈ This project is a work in progress β€” I’ll keep improving the detection accuracy and optimizing the model behavior over time.

🧾 Sample Output

Output 1 Output 2 Output 3

⚑ Future Improvements (Ideas)

πŸ”΄ Real-time webcam detection

πŸŽ₯ Live video stream support (via OpenCV or WebRTC)

Β© 2025 Rishika Kumari. All rights reserved.

Releases

No releases published

Packages

No packages published

Languages