Skip to content

Production-grade Rust execution infrastructure for automated trading. Zero-allocation hot paths. No panics on external input. MIRI-verified memory safety. Python computes the strategy. nanobook handles everything else.

License

Notifications You must be signed in to change notification settings

ricardofrantz/nanobook

Repository files navigation

nanobook

CI crates.io docs.rs License: MIT cargo-deny

Production-grade Rust execution infrastructure for automated trading. Zero-allocation hot paths. No panics on external input. Python computes the strategy. nanobook handles everything else.

Architecture

┌─────────────────────────────────────────────────┐
│        Your Python Strategy  (private)          │
│   Factors · Signals · Sizing · Scheduling       │
├─────────────────────────────────────────────────┤
│            nanobook  (Rust, open-source)         │
│  ┌──────────┬──────────┬──────────┬──────────┐  │
│  │  Broker  │   Risk   │Portfolio │   LOB    │  │
│  │   IBKR   │  Engine  │Simulator │  Engine  │  │
│  │  Binance │ PreTrade │ Backtest │ 8M ops/s │  │
│  └──────────┴──────────┴──────────┴──────────┘  │
│   Rebalancer CLI: weights → diff → execute      │
└─────────────────────────────────────────────────┘

Python computes what to trade — factor rankings, signals, target weights. nanobook executes how — order routing, risk checks, portfolio simulation, and a deterministic matching engine. Clean separation: strategy logic stays in Python, execution runs in Rust.

Workspace

Crate Description
nanobook LOB matching engine, portfolio simulator, backtest bridge, GARCH, optimizers
nanobook-broker Broker trait with IBKR and Binance adapters
nanobook-risk Pre-trade risk engine (position limits, leverage, short exposure)
nanobook-python PyO3 bindings for all layers
nanobook-rebalancer CLI: target weights → IBKR execution with audit trail

Install

Python:

pip install nanobook

Rust:

[dependencies]
nanobook = "0.9"

From source:

git clone https://github.com/ricardofrantz/nanobook
cd nanobook
cargo build --release
cargo test

# Python bindings
cd python && maturin develop --release

# Binance adapter (feature-gated, not in PyPI wheels)
cd python && maturin develop --release --features binance

The Bridge: Python Strategy → Rust Execution

The canonical integration pattern — Python computes a weight schedule, Rust simulates the portfolio and returns metrics:

import nanobook

result = nanobook.backtest_weights(
    weight_schedule=[
        [("AAPL", 0.5), ("MSFT", 0.5)],
        [("AAPL", 0.3), ("NVDA", 0.7)],
    ],
    price_schedule=[
        [("AAPL", 185_00), ("MSFT", 370_00)],
        [("AAPL", 190_00), ("MSFT", 380_00), ("NVDA", 600_00)],
    ],
    initial_cash=1_000_000_00,  # $1M in cents
    cost_bps=15,                # 15 bps round-trip
    stop_cfg={"trailing_stop_pct": 0.05},
)

print(f"Sharpe: {result['metrics'].sharpe:.2f}")
print(f"Max DD: {result['metrics'].max_drawdown:.1%}")
print(result["holdings"][-1])    # per-period symbol weights
print(result["stop_events"])     # stop trigger metadata

Your optimizer produces weights. backtest_weights() handles rebalancing, cost modeling, position tracking, and return computation at compiled speed with the GIL released.

v0.9 additions: GARCH(1,1) forecasting, portfolio optimizers (min-variance, max-Sharpe, risk-parity, CVaR, CDaR), and trailing/fixed stop-loss simulation — all accessible from Python.

Optimizer Example

import nanobook
import numpy as np

# Daily returns matrix (T × N)
returns = np.random.randn(252, 5) * 0.01

weights = nanobook.optimize_max_sharpe(returns, risk_free_rate=0.0)
print(dict(zip(["A","B","C","D","E"], weights)))

Layer Examples

LOB Engine (Rust)

use nanobook::{Exchange, Side, Price, TimeInForce};

let mut exchange = Exchange::new();
exchange.submit_limit(Side::Sell, Price(50_00), 100, TimeInForce::GTC);
let result = exchange.submit_limit(Side::Buy, Price(50_00), 100, TimeInForce::GTC);

assert_eq!(result.trades.len(), 1);
assert_eq!(result.trades[0].price, Price(50_00));

Portfolio + Metrics (Python)

portfolio = nanobook.Portfolio(1_000_000_00, nanobook.CostModel(commission_bps=5))
portfolio.rebalance_simple([("AAPL", 0.6)], [("AAPL", 150_00)])
portfolio.record_return([("AAPL", 155_00)])
metrics = portfolio.compute_metrics(252.0, 0.0)
print(f"Sharpe: {metrics.sharpe:.2f}")

Broker + Risk (Python)

# Pre-trade risk check
risk = nanobook.RiskEngine(max_position_pct=0.25, max_leverage=1.5)
checks = risk.check_order("AAPL", "buy", 100, 185_00,
                          equity_cents=1_000_000_00,
                          positions=[("AAPL", 200)])

# Execute through IBKR
broker = nanobook.IbkrBroker("127.0.0.1", 4002, client_id=1)
broker.connect()
oid = broker.submit_order("AAPL", "buy", 100, order_type="limit",
                          limit_price_cents=185_00)

Rebalancer CLI

# Build
cargo build -p nanobook-rebalancer --release

# Dry run — show plan without executing
rebalancer run target.json --dry-run

# Execute with confirmation prompt
rebalancer run target.json

# Compare actual vs target positions
rebalancer reconcile target.json

Performance

Single-threaded benchmarks (AMD Ryzen / Intel Core):

Operation Latency Throughput
Submit (no match) 120 ns 8.3M ops/sec
Submit (with match) ~200 ns 5M ops/sec
BBO query ~1 ns 1B ops/sec
Cancel (tombstone) 170 ns 5.9M ops/sec
L2 snapshot (10 levels) ~500 ns 2M ops/sec

Single-threaded throughput is roughly equivalent to Numba (both compile to LLVM IR). Where Rust wins: zero cold-start, true parallelism via Rayon with no GIL contention, and deterministic memory without GC pauses.

cargo bench

Feature Flags

Feature Default Description
event-log Yes Event recording for deterministic replay
serde No Serialize/deserialize all public types
persistence No File-based event sourcing (JSON Lines)
portfolio No Portfolio engine, position tracking, metrics, strategy trait
parallel No Rayon-based parallel parameter sweeps
itch No NASDAQ ITCH 5.0 binary protocol parser

Design Constraints

Engineering decisions that keep the system simple and fast:

  • Single-threaded — deterministic by design; same inputs always produce same outputs
  • In-process — no networking overhead; wrap externally if needed
  • No compliance layer — no self-trade prevention or circuit breakers (out of scope)
  • No complex order types — no iceberg or pegged orders

Documentation

  • Full developer reference is merged below in this README (## Full Reference (Merged from DOC.md)).
  • docs.rs — Rust API docs

License

MIT

Full Reference (Merged from DOC.md)

CI crates.io docs.rs License: MIT

Developer Reference — Full API documentation for the nanobook workspace.


Table of Contents


Quick Start

[dependencies]
nanobook = "0.9"
use nanobook::{Exchange, Side, Price, TimeInForce};

let mut exchange = Exchange::new();
exchange.submit_limit(Side::Sell, Price(50_00), 100, TimeInForce::GTC);
let result = exchange.submit_limit(Side::Buy, Price(50_00), 100, TimeInForce::GTC);

assert_eq!(result.trades.len(), 1);
assert_eq!(result.trades[0].price, Price(50_00));

Core Concepts

Prices

Prices are integers in the smallest currency unit (cents for USD), avoiding floating-point errors.

let price = Price(100_50);  // $100.50
assert!(Price(100_00) < Price(101_00));

Display formats as dollars: Price(10050) prints as $100.50.

Constants: Price::ZERO, Price::MAX (market buys), Price::MIN (market sells).

Quantities and Timestamps

  • Quantity = u64 — shares or contracts, always positive.
  • Timestamp = u64 — monotonic nanosecond counter (not system clock), guaranteeing deterministic ordering.

Determinism

No randomness anywhere. Same sequence of operations always produces identical trades. Event replay reconstructs exact state.


Exchange API

Exchange is the main entry point, wrapping an OrderBook with order submission, cancellation, modification, and queries.

Order Submission

// Limit order — matches against opposite side, remainder handled by TIF
let result = exchange.submit_limit(Side::Buy, Price(100_00), 100, TimeInForce::GTC);

// Market order — IOC semantics at Price::MAX (buy) or Price::MIN (sell)
let result = exchange.submit_market(Side::Buy, 500);

Order Management

// Cancel — O(1) via tombstones
let result = exchange.cancel(order_id);  // CancelResult { success, cancelled_quantity, error }

// Modify — cancel + replace (loses time priority, gets new OrderId)
let result = exchange.modify(order_id, Price(101_00), 200);

Queries

let (bid, ask) = exchange.best_bid_ask();  // L1 — O(1)
let spread = exchange.spread();             // Option<i64>
let snap = exchange.depth(10);              // L2 — top 10 levels
let full = exchange.full_book();            // L3 — everything
let order = exchange.get_order(OrderId(1)); // Option<&Order>
let trades = exchange.trades();             // &[Trade]

Memory Management

exchange.clear_trades();           // Clear trade history
exchange.clear_order_history();    // Remove filled/cancelled orders
exchange.compact();                // Reclaim tombstone memory

Input Validation

The try_submit_* methods validate inputs before processing:

let err = exchange.try_submit_limit(Side::Buy, Price(0), 100, TimeInForce::GTC);
assert_eq!(err.unwrap_err(), ValidationError::ZeroPrice);

Time-in-Force Semantics

TIF Partial Fill? Rests on Book? No Liquidity
GTC Yes Yes (remainder) Rests entirely
IOC Yes No (remainder cancelled) Cancelled
FOK No No (all-or-nothing) Cancelled

Types Reference

Type Definition Description Display
Price struct Price(pub i64) Price in smallest units (cents) $100.50
Quantity type Quantity = u64 Number of shares/contracts
OrderId struct OrderId(pub u64) Unique order identifier O42
TradeId struct TradeId(pub u64) Unique trade identifier T7
Timestamp type Timestamp = u64 Nanosecond counter (not wall clock)

Result Types

pub struct SubmitResult {
    pub order_id: OrderId,
    pub status: OrderStatus,          // New | PartiallyFilled | Filled | Cancelled
    pub trades: Vec<Trade>,
    pub filled_quantity: Quantity,
    pub resting_quantity: Quantity,
    pub cancelled_quantity: Quantity,
}

pub struct Trade {
    pub id: TradeId,
    pub price: Price,                 // Resting order's price (aggressor gets price improvement)
    pub quantity: Quantity,
    pub aggressor_order_id: OrderId,
    pub passive_order_id: OrderId,
    pub aggressor_side: Side,
    pub timestamp: Timestamp,
}

Enums

Enum Variants Key Methods
Side Buy, Sell opposite()
TimeInForce GTC, IOC, FOK can_rest(), allows_partial()
OrderStatus New, PartiallyFilled, Filled, Cancelled is_active(), is_terminal()

Book Snapshots

pub struct BookSnapshot {
    pub bids: Vec<LevelSnapshot>,  // Highest price first
    pub asks: Vec<LevelSnapshot>,  // Lowest price first
    pub timestamp: Timestamp,
}

pub struct LevelSnapshot {
    pub price: Price,
    pub quantity: Quantity,
    pub order_count: usize,
}
Method Returns
snap.best_bid() / best_ask() Option<Price>
snap.spread() Option<i64>
snap.mid_price() Option<f64>
snap.total_bid_quantity() / total_ask_quantity() Quantity
snap.imbalance() Option<f64> — [-1.0, 1.0], positive = buy pressure
snap.weighted_mid() Option<f64> — leans toward less liquid side

Stop Orders & Trailing Stops

Stop Orders

// Stop-market: triggers market order when last trade price hits stop
exchange.submit_stop_market(Side::Sell, Price(95_00), 100);

// Stop-limit: triggers limit order at limit_price when stop hits
exchange.submit_stop_limit(Side::Sell, Price(95_00), Price(94_50), 100, TimeInForce::GTC);
Side Triggers When
Buy stop last_trade_price >= stop_price
Sell stop last_trade_price <= stop_price

Key behaviors: immediate trigger if price already past stop, cascade up to 100 iterations, cancel via exchange.cancel(stop_id).

Trailing Stops

Three trailing methods — stop price tracks the market and only moves in the favorable direction:

// Fixed: triggers if price drops $2.00 from peak
exchange.submit_trailing_stop_market(Side::Sell, Price(98_00), 100, TrailMethod::Fixed(200));

// Percentage: trail by 5% from peak
exchange.submit_trailing_stop_market(Side::Sell, Price(95_00), 100, TrailMethod::Percentage(0.05));

// ATR-based: adaptive trailing using 2x ATR over 14-period window
exchange.submit_trailing_stop_market(Side::Sell, Price(95_00), 100,
    TrailMethod::Atr { multiplier: 2.0, period: 14 });

Trailing stop-limit variant: submit_trailing_stop_limit() — same parameters plus limit_price and TimeInForce.


Event Replay

Feature flag: event-log (enabled by default)

Every operation is recorded as an Event. Replaying events on a fresh exchange produces identical state.

// Save events
let events = exchange.events().to_vec();

// Reconstruct exact state
let replayed = Exchange::replay(&events);
assert_eq!(exchange.best_bid_ask(), replayed.best_bid_ask());

Event types: SubmitLimit, SubmitMarket, Cancel, Modify.

Disable for max performance:

nanobook = { version = "0.9", default-features = false }

Symbol & MultiExchange

Symbol

Fixed-size instrument identifier. [u8; 8] inline — Copy, no heap allocation, max 8 ASCII bytes.

let sym = Symbol::new("AAPL");
assert!(Symbol::try_new("TOOLONGNAME").is_none());

MultiExchange

Independent per-symbol order books:

let mut multi = MultiExchange::new();
let aapl = Symbol::new("AAPL");

multi.get_or_create(&aapl).submit_limit(Side::Sell, Price(150_00), 100, TimeInForce::GTC);

for (sym, bid, ask) in multi.best_prices() {
    println!("{sym}: bid={bid:?} ask={ask:?}");
}

Portfolio Engine

Feature flag: portfolio

Tracks cash, positions, costs, returns, and equity over time.

use nanobook::portfolio::{Portfolio, CostModel};

let cost = CostModel { commission_bps: 5, slippage_bps: 3, min_trade_fee: 1_00 };
let mut portfolio = Portfolio::new(1_000_000_00, cost);

// Rebalance to target weights
portfolio.rebalance_simple(&[(Symbol::new("AAPL"), 0.6)], &[(Symbol::new("AAPL"), 150_00)]);

// Record period return and compute metrics
portfolio.record_return(&[(Symbol::new("AAPL"), 155_00)]);
let metrics = compute_metrics(portfolio.returns(), 252.0, 0.0);

Execution Modes

  • SimpleFill — instant at bar prices: portfolio.rebalance_simple(targets, prices)
  • LOBFill — route through Exchange matching engines: portfolio.rebalance_lob(targets, exchanges)

Position

Per-symbol tracking with VWAP entry price and realized PnL:

let mut pos = Position::new(Symbol::new("AAPL"));
pos.apply_fill(100, 150_00);   // buy 100 @ $150
pos.apply_fill(-50, 160_00);   // sell 50 @ $160 → $500 realized PnL

Financial Metrics

compute_metrics(&returns, periods_per_year, risk_free) returns: total_return, cagr, volatility, sharpe, sortino, max_drawdown, calmar, num_periods, winning_periods, losing_periods.

Parallel Sweep

Feature flag: parallel (implies portfolio)

use nanobook::portfolio::sweep::sweep;

let results = sweep(&params, 12.0, 0.0, |&leverage| {
    vec![0.01 * leverage, -0.005 * leverage]
});

Strategy Trait

Feature flag: portfolio

Implement compute_weights() for batch-oriented backtesting:

impl Strategy for MomentumStrategy {
    fn compute_weights(
        &self,
        bar_index: usize,
        prices: &[(Symbol, i64)],
        _portfolio: &Portfolio,
    ) -> Vec<(Symbol, f64)> {
        if bar_index < self.lookback { return vec![]; }
        let w = 1.0 / prices.len() as f64;
        prices.iter().map(|(sym, _)| (*sym, w)).collect()
    }
}

let result = run_backtest(&strategy, &price_series, 1_000_000_00, CostModel::zero(), 12.0, 0.0);

Built-in: EqualWeight strategy. Parallel variant: sweep_strategy().


Backtest Bridge

The bridge between Python strategy code and Rust execution. Python computes a weight schedule, Rust simulates the portfolio at compiled speed.

Rust API

use nanobook::backtest_bridge::backtest_weights;

let result = backtest_weights(
    &weight_schedule,    // &[Vec<(Symbol, f64)>] — target weights per period
    &price_schedule,     // &[Vec<(Symbol, i64)>] — prices per period
    1_000_000_00,        // initial cash in cents
    15,                  // cost in basis points
    252.0,               // periods per year
    0.0,                 // risk-free rate per period
);

Returns BacktestBridgeResult:

Field Type Description
returns Vec<f64> Per-period returns
equity_curve Vec<i64> Equity at each period (cents)
final_cash i64 Ending cash balance
metrics Option<Metrics> Sharpe, Sortino, max drawdown, etc.
holdings Vec<Vec<(Symbol, f64)>> Per-period holdings weights
symbol_returns Vec<Vec<(Symbol, f64)>> Per-period close-to-close symbol returns
stop_events Vec<BacktestStopEvent> Stop trigger metadata (index, symbol, price, reason)

Python API

result = nanobook.py_backtest_weights(
    weight_schedule=[[("AAPL", 0.5), ("MSFT", 0.5)], ...],
    price_schedule=[[("AAPL", 185_00), ("MSFT", 370_00)], ...],
    initial_cash=1_000_000_00,
    cost_bps=15,
    periods_per_year=252.0,
    risk_free=0.0,
    stop_cfg={"trailing_stop_pct": 0.05},
)
# result["returns"], result["equity_curve"], result["metrics"],
# result["holdings"], result["symbol_returns"], result["stop_events"]

GIL is released during computation for maximum throughput.

Clean aliases (no py_ prefix) are exported for new integrations: backtest_weights, capabilities, garch_forecast, and optimize_*.

qtrade v0.4 Bridge Pattern

Capability probing contract used by calc.bridge:

import nanobook

def has_nanobook_feature(name: str) -> bool:
    caps = set(nanobook.py_capabilities()) if hasattr(nanobook, "py_capabilities") else set()
    if name in caps:
        return True

    symbol_map = {
        "backtest_stops": "py_backtest_weights",
        "garch_forecast": "py_garch_forecast",
        "optimize_min_variance": "py_optimize_min_variance",
        "optimize_max_sharpe": "py_optimize_max_sharpe",
        "optimize_risk_parity": "py_optimize_risk_parity",
        "optimize_cvar": "py_optimize_cvar",
        "optimize_cdar": "py_optimize_cdar",
        "backtest_holdings": "py_backtest_weights",
    }
    sym = symbol_map.get(name)
    return bool(sym and hasattr(nanobook, sym))

Broker Abstraction

Crate: nanobook-broker

Generic trait over brokerages with concrete adapters for IBKR and Binance.

Broker Trait

pub trait Broker {
    fn connect(&mut self) -> Result<(), BrokerError>;
    fn disconnect(&mut self) -> Result<(), BrokerError>;
    fn positions(&self) -> Result<Vec<Position>, BrokerError>;
    fn account(&self) -> Result<Account, BrokerError>;
    fn submit_order(&self, order: &BrokerOrder) -> Result<OrderId, BrokerError>;
    fn order_status(&self, id: OrderId) -> Result<BrokerOrderStatus, BrokerError>;
    fn cancel_order(&self, id: OrderId) -> Result<(), BrokerError>;
    fn quote(&self, symbol: &Symbol) -> Result<Quote, BrokerError>;
}

Key Types

pub struct Position {
    pub symbol: Symbol,
    pub quantity: i64,             // Positive = long, negative = short
    pub avg_cost_cents: i64,
    pub market_value_cents: i64,
    pub unrealized_pnl_cents: i64,
}

pub struct Account {
    pub equity_cents: i64,
    pub buying_power_cents: i64,
    pub cash_cents: i64,
    pub gross_position_value_cents: i64,
}

pub struct BrokerOrder {
    pub symbol: Symbol,
    pub side: BrokerSide,          // Buy or Sell
    pub quantity: u64,
    pub order_type: BrokerOrderType,  // Market or Limit(Price)
}

pub struct Quote {
    pub symbol: Symbol,
    pub bid_cents: i64,
    pub ask_cents: i64,
    pub last_cents: i64,
    pub volume: u64,
}

IBKR Adapter

Feature: ibkr

Connects to TWS/Gateway via the ibapi crate (blocking API).

let mut broker = IbkrBroker::new("127.0.0.1", 4002, 1);  // 4002 = paper, 4001 = live
broker.connect()?;
let positions = broker.positions()?;
let quote = broker.quote(&Symbol::new("AAPL"))?;

Binance Adapter

Feature: binance

REST API via reqwest::blocking. Converts nanobook symbols (e.g., "BTC") to Binance pairs (e.g., "BTCUSDT").

let mut broker = BinanceBroker::new(api_key, secret_key, true);  // testnet
broker.connect()?;

Python

broker = nanobook.IbkrBroker("127.0.0.1", 4002, client_id=1)
broker.connect()
positions = broker.positions()   # List[Dict] with symbol, quantity, avg_cost_cents, ...
oid = broker.submit_order("AAPL", "buy", 100, order_type="limit", limit_price_cents=185_00)
quote = broker.quote("AAPL")     # Dict with bid_cents, ask_cents, last_cents, volume

broker = nanobook.BinanceBroker(api_key, secret_key, testnet=True, quote_asset="USDT")

Risk Engine

Crate: nanobook-risk

Pre-trade risk validation for single orders and rebalance batches.

RiskConfig

pub struct RiskConfig {
    pub max_position_pct: f64,       // Max single position as fraction of equity (default 0.25)
    pub max_order_value_cents: i64,  // Max single order value
    pub max_batch_value_cents: i64,  // Max rebalance batch value
    pub max_leverage: f64,           // Max gross exposure / equity (default 1.5)
    pub max_drawdown_pct: f64,       // Circuit breaker threshold (default 0.20)
    pub allow_short: bool,           // Allow short positions (default true)
    pub max_short_pct: f64,          // Max short exposure fraction (default 0.30)
    pub min_trade_usd: f64,
    pub max_trade_usd: f64,          // Max single trade USD (default 100,000)
}

Notes:

  • max_drawdown_pct is validated at engine construction and preserved in config, but not yet used in execution-time checks.

Single Order Check

let engine = RiskEngine::new(RiskConfig::default());
let report = engine.check_order(
    &Symbol::new("AAPL"),
    BrokerSide::Buy,
    100,              // quantity
    185_00,           // price in cents
    &account,
    &current_positions,
);

if report.has_failures() {
    // Order violates risk limits — position concentration, short selling, etc.
}

Batch Check

Validates a full rebalance against position limits, leverage, and short exposure:

let report = engine.check_batch(
    &orders,              // &[(Symbol, BrokerSide, u64, i64)]
    &account,
    &current_positions,
    &target_weights,      // &[(Symbol, f64)]
);

RiskReport

pub struct RiskReport {
    pub checks: Vec<RiskCheck>,
}

pub struct RiskCheck {
    pub name: &'static str,
    pub status: RiskStatus,  // Pass | Warn | Fail
    pub detail: String,
}

impl RiskReport {
    pub fn has_failures(&self) -> bool;
    pub fn has_warnings(&self) -> bool;
}

Python

risk = nanobook.RiskEngine(max_position_pct=0.25, max_leverage=1.5)

# Single order
checks = risk.check_order("AAPL", "buy", 100, 185_00,
                          equity_cents=1_000_000_00,
                          positions=[("AAPL", 200)])

# Batch (full rebalance)
checks = risk.check_batch(
    orders=[("AAPL", "buy", 100, 185_00), ("MSFT", "sell", 50, 370_00)],
    equity_cents=1_000_000_00,
    positions=[("AAPL", 200), ("MSFT", 100)],
    target_weights=[("AAPL", 0.6), ("MSFT", 0.2)],
)
# Each check: {"name": "...", "status": "Pass|Warn|Fail", "detail": "..."}

Rebalancer CLI

Crate: nanobook-rebalancer

CLI tool that bridges target weights to IBKR execution with risk checks, rate limiting, and audit trail.

Pipeline

  1. Read target weights from target.json (output of your optimizer)
  2. Connect to IBKR Gateway for live positions, prices, account data
  3. Compute CURRENT → TARGET diff (share quantities, limit prices)
  4. Run pre-trade risk checks (position limits, leverage, short exposure)
  5. Show plan, confirm (or --force for automation)
  6. Execute limit orders with rate limiting and timeout-based cancellation
  7. Reconcile and log to JSONL audit trail

Commands

rebalancer status                     # Check IBKR connection
rebalancer positions                  # Show current positions
rebalancer run target.json            # Plan → confirm → execute
rebalancer run target.json --dry-run  # Plan only
rebalancer run target.json --force    # Skip confirmation (cron/automation)
rebalancer reconcile target.json      # Compare actual vs target

target.json

{
  "timestamp": "2026-02-08T15:30:00Z",
  "targets": [
    { "symbol": "AAPL", "weight": 0.40 },
    { "symbol": "MSFT", "weight": 0.30 },
    { "symbol": "SPY",  "weight": -0.10 },
    { "symbol": "QQQ",  "weight": 0.20 }
  ],
  "constraints": {
    "max_position_pct": 0.40,
    "max_leverage": 1.5
  }
}

Positive weights are long, negative are short. Symbols absent from the target but present in the account get closed. See rebalancer/config.toml.example for the full configuration reference.


Python Bindings

Install: pip install nanobook or cd python && maturin develop --release

Exchange

ex = nanobook.Exchange()
result = ex.submit_limit("buy", 10050, 100, "gtc")
result = ex.submit_market("sell", 50)
ex.cancel(result.order_id)
bid, ask = ex.best_bid_ask()
snap = ex.depth(10)

Stop Orders

ex.submit_stop_market("sell", 9500, 100)
ex.submit_stop_limit("buy", 10500, 10600, 100, "gtc")
ex.submit_trailing_stop_market("sell", 9500, 100, "percentage", 0.05)

Portfolio

portfolio = nanobook.Portfolio(1_000_000_00, nanobook.CostModel(commission_bps=10))
portfolio.rebalance_simple([("AAPL", 0.6)], [("AAPL", 150_00)])
portfolio.record_return([("AAPL", 155_00)])
metrics = portfolio.compute_metrics(252.0, 0.0)

Strategy Callback

result = nanobook.run_backtest(
    strategy=lambda bar, prices, portfolio: [("AAPL", 0.5), ("GOOG", 0.5)],
    price_series=[{"AAPL": 150_00, "GOOG": 280_00}] * 252,
    initial_cash=1_000_000_00,
    cost_model=nanobook.CostModel.zero(),
)

ITCH Parser

events = nanobook.parse_itch("data/sample.itch")

Book Analytics

Imbalance

let snap = exchange.depth(10);
if let Some(imb) = snap.imbalance() {
    // [-1.0, 1.0]: positive = buy pressure
    println!("Imbalance: {imb:.4}");
}

Weighted Midpoint

if let Some(wmid) = snap.weighted_mid() {
    println!("Weighted mid: {wmid:.2}");
}

VWAP

if let Some(vwap) = Trade::vwap(exchange.trades()) {
    println!("VWAP: {vwap}");
}

Persistence & Serde

Persistence

Feature flag: persistence (includes serde and event-log)

// Exchange — JSON Lines event sourcing
exchange.save(Path::new("orders.jsonl")).unwrap();
let loaded = Exchange::load(Path::new("orders.jsonl")).unwrap();

// Portfolio — JSON
portfolio.save_json(Path::new("portfolio.json")).unwrap();
let loaded = Portfolio::load_json(Path::new("portfolio.json")).unwrap();

Serde

Feature flag: serde

All public types derive Serialize/Deserialize: Price, OrderId, TradeId, Symbol, Side, TimeInForce, OrderStatus, Order, Trade, Event, SubmitResult, CancelResult, ModifyResult, BookSnapshot, LevelSnapshot, StopOrder, Position, CostModel, and more.


CLI Reference

Interactive REPL for the order book:

cargo run --bin lob
Command Example
buy <price> <qty> [ioc|fok] buy 100.50 100
sell <price> <qty> [ioc|fok] sell 101.00 50 ioc
market <buy|sell> <qty> market buy 200
stop <buy|sell> <price> <qty> stop buy 105.00 100
cancel <order_id> cancel 3
book / trades Show book or trade history
save <path> / load <path> Persistence (requires feature)

Performance

Benchmarks

Single-threaded (AMD Ryzen / Intel Core):

Operation Latency Throughput Complexity
Submit (no match) 120 ns 8.3M ops/sec O(log P)
Submit (with match) ~200 ns 5M ops/sec O(log P + M)
BBO query ~1 ns 1B ops/sec O(1)
Cancel (tombstone) 170 ns 5.9M ops/sec O(1)
L2 snapshot (10 levels) ~500 ns 2M ops/sec O(D)

Where P = price levels, M = orders matched, D = depth.

Time Breakdown (Submit, No Match)

submit_limit() ~120 ns:
├── FxHashMap insert     ~30 ns   order storage
├── BTreeMap insert      ~30 ns   price level (O(log P))
├── VecDeque push         ~5 ns   FIFO queue
├── Event recording      ~10 ns   (optional, for replay)
└── Overhead             ~45 ns   struct creation, etc.

Optimizations

  1. O(1) cancel — Tombstone-based, 350x faster than linear scan
  2. FxHash — Non-cryptographic hash for OrderId lookups (+25% vs std HashMap)
  3. Cached BBO — Best bid/ask cached for O(1) access
  4. Optional event logging — disable event-log feature for max throughput

Rust vs Numba

Single-threaded throughput is roughly equivalent (both compile to LLVM IR). Where Rust wins: zero cold-start (vs Numba's ~300 ms JIT), true parallelism via Rayon with no GIL contention, and deterministic memory without GC pauses.


Comparison with Other Rust LOBs

Library Throughput Order Types Deterministic Use Case
nanobook 8M ops/sec Limit, Market, Stops, GTC/IOC/FOK Yes Strategy backtesting
limitbook 3-5M ops/sec Limit, Market No General purpose
lobster ~300K ops/sec Limit, Market No Simple matching
OrderBook-rs 200K ops/sec Many (iceberg, peg, etc.) No Production HFT

Design Constraints

Engineering decisions that keep the system simple and fast:

Constraint Rationale
Single-threaded Deterministic by design — same inputs always produce same outputs
In-process No networking overhead; wrap externally if needed
No compliance No self-trade prevention or circuit breakers (out of scope)
No complex orders No iceberg or pegged orders
Integer prices Fixed-point arithmetic avoids floating-point rounding
Statistics in Python Spearman/IC/t-stat belong in scipy/Polars — proven, mature

About

Production-grade Rust execution infrastructure for automated trading. Zero-allocation hot paths. No panics on external input. MIRI-verified memory safety. Python computes the strategy. nanobook handles everything else.

Topics

Resources

License

Contributing

Stars

Watchers

Forks