Production-grade Rust execution infrastructure for automated trading. Zero-allocation hot paths. No panics on external input. Python computes the strategy. nanobook handles everything else.
┌─────────────────────────────────────────────────┐
│ Your Python Strategy (private) │
│ Factors · Signals · Sizing · Scheduling │
├─────────────────────────────────────────────────┤
│ nanobook (Rust, open-source) │
│ ┌──────────┬──────────┬──────────┬──────────┐ │
│ │ Broker │ Risk │Portfolio │ LOB │ │
│ │ IBKR │ Engine │Simulator │ Engine │ │
│ │ Binance │ PreTrade │ Backtest │ 8M ops/s │ │
│ └──────────┴──────────┴──────────┴──────────┘ │
│ Rebalancer CLI: weights → diff → execute │
└─────────────────────────────────────────────────┘
Python computes what to trade — factor rankings, signals, target weights. nanobook executes how — order routing, risk checks, portfolio simulation, and a deterministic matching engine. Clean separation: strategy logic stays in Python, execution runs in Rust.
| Crate | Description |
|---|---|
nanobook |
LOB matching engine, portfolio simulator, backtest bridge, GARCH, optimizers |
nanobook-broker |
Broker trait with IBKR and Binance adapters |
nanobook-risk |
Pre-trade risk engine (position limits, leverage, short exposure) |
nanobook-python |
PyO3 bindings for all layers |
nanobook-rebalancer |
CLI: target weights → IBKR execution with audit trail |
Python:
pip install nanobookRust:
[dependencies]
nanobook = "0.9"From source:
git clone https://github.com/ricardofrantz/nanobook
cd nanobook
cargo build --release
cargo test
# Python bindings
cd python && maturin develop --release
# Binance adapter (feature-gated, not in PyPI wheels)
cd python && maturin develop --release --features binanceThe canonical integration pattern — Python computes a weight schedule, Rust simulates the portfolio and returns metrics:
import nanobook
result = nanobook.backtest_weights(
weight_schedule=[
[("AAPL", 0.5), ("MSFT", 0.5)],
[("AAPL", 0.3), ("NVDA", 0.7)],
],
price_schedule=[
[("AAPL", 185_00), ("MSFT", 370_00)],
[("AAPL", 190_00), ("MSFT", 380_00), ("NVDA", 600_00)],
],
initial_cash=1_000_000_00, # $1M in cents
cost_bps=15, # 15 bps round-trip
stop_cfg={"trailing_stop_pct": 0.05},
)
print(f"Sharpe: {result['metrics'].sharpe:.2f}")
print(f"Max DD: {result['metrics'].max_drawdown:.1%}")
print(result["holdings"][-1]) # per-period symbol weights
print(result["stop_events"]) # stop trigger metadataYour optimizer produces weights. backtest_weights() handles rebalancing,
cost modeling, position tracking, and return computation at compiled speed
with the GIL released.
v0.9 additions: GARCH(1,1) forecasting, portfolio optimizers (min-variance, max-Sharpe, risk-parity, CVaR, CDaR), and trailing/fixed stop-loss simulation — all accessible from Python.
import nanobook
import numpy as np
# Daily returns matrix (T × N)
returns = np.random.randn(252, 5) * 0.01
weights = nanobook.optimize_max_sharpe(returns, risk_free_rate=0.0)
print(dict(zip(["A","B","C","D","E"], weights)))use nanobook::{Exchange, Side, Price, TimeInForce};
let mut exchange = Exchange::new();
exchange.submit_limit(Side::Sell, Price(50_00), 100, TimeInForce::GTC);
let result = exchange.submit_limit(Side::Buy, Price(50_00), 100, TimeInForce::GTC);
assert_eq!(result.trades.len(), 1);
assert_eq!(result.trades[0].price, Price(50_00));portfolio = nanobook.Portfolio(1_000_000_00, nanobook.CostModel(commission_bps=5))
portfolio.rebalance_simple([("AAPL", 0.6)], [("AAPL", 150_00)])
portfolio.record_return([("AAPL", 155_00)])
metrics = portfolio.compute_metrics(252.0, 0.0)
print(f"Sharpe: {metrics.sharpe:.2f}")# Pre-trade risk check
risk = nanobook.RiskEngine(max_position_pct=0.25, max_leverage=1.5)
checks = risk.check_order("AAPL", "buy", 100, 185_00,
equity_cents=1_000_000_00,
positions=[("AAPL", 200)])
# Execute through IBKR
broker = nanobook.IbkrBroker("127.0.0.1", 4002, client_id=1)
broker.connect()
oid = broker.submit_order("AAPL", "buy", 100, order_type="limit",
limit_price_cents=185_00)# Build
cargo build -p nanobook-rebalancer --release
# Dry run — show plan without executing
rebalancer run target.json --dry-run
# Execute with confirmation prompt
rebalancer run target.json
# Compare actual vs target positions
rebalancer reconcile target.jsonSingle-threaded benchmarks (AMD Ryzen / Intel Core):
| Operation | Latency | Throughput |
|---|---|---|
| Submit (no match) | 120 ns | 8.3M ops/sec |
| Submit (with match) | ~200 ns | 5M ops/sec |
| BBO query | ~1 ns | 1B ops/sec |
| Cancel (tombstone) | 170 ns | 5.9M ops/sec |
| L2 snapshot (10 levels) | ~500 ns | 2M ops/sec |
Single-threaded throughput is roughly equivalent to Numba (both compile to LLVM IR). Where Rust wins: zero cold-start, true parallelism via Rayon with no GIL contention, and deterministic memory without GC pauses.
cargo bench| Feature | Default | Description |
|---|---|---|
event-log |
Yes | Event recording for deterministic replay |
serde |
No | Serialize/deserialize all public types |
persistence |
No | File-based event sourcing (JSON Lines) |
portfolio |
No | Portfolio engine, position tracking, metrics, strategy trait |
parallel |
No | Rayon-based parallel parameter sweeps |
itch |
No | NASDAQ ITCH 5.0 binary protocol parser |
Engineering decisions that keep the system simple and fast:
- Single-threaded — deterministic by design; same inputs always produce same outputs
- In-process — no networking overhead; wrap externally if needed
- No compliance layer — no self-trade prevention or circuit breakers (out of scope)
- No complex order types — no iceberg or pegged orders
- Full developer reference is merged below in this README (
## Full Reference (Merged from DOC.md)). - docs.rs — Rust API docs
MIT
Developer Reference — Full API documentation for the nanobook workspace.
- Quick Start
- Core Concepts
- Exchange API
- Types Reference
- Book Snapshots
- Stop Orders & Trailing Stops
- Event Replay
- Symbol & MultiExchange
- Portfolio Engine
- Strategy Trait
- Backtest Bridge
- Broker Abstraction
- Risk Engine
- Rebalancer CLI
- Python Bindings
- Book Analytics
- Persistence & Serde
- CLI Reference
- Performance
- Comparison with Other Rust LOBs
- Design Constraints
[dependencies]
nanobook = "0.9"use nanobook::{Exchange, Side, Price, TimeInForce};
let mut exchange = Exchange::new();
exchange.submit_limit(Side::Sell, Price(50_00), 100, TimeInForce::GTC);
let result = exchange.submit_limit(Side::Buy, Price(50_00), 100, TimeInForce::GTC);
assert_eq!(result.trades.len(), 1);
assert_eq!(result.trades[0].price, Price(50_00));Prices are integers in the smallest currency unit (cents for USD), avoiding floating-point errors.
let price = Price(100_50); // $100.50
assert!(Price(100_00) < Price(101_00));Display formats as dollars: Price(10050) prints as $100.50.
Constants: Price::ZERO, Price::MAX (market buys), Price::MIN (market sells).
Quantity = u64— shares or contracts, always positive.Timestamp = u64— monotonic nanosecond counter (not system clock), guaranteeing deterministic ordering.
No randomness anywhere. Same sequence of operations always produces identical trades. Event replay reconstructs exact state.
Exchange is the main entry point, wrapping an OrderBook with order submission, cancellation, modification, and queries.
// Limit order — matches against opposite side, remainder handled by TIF
let result = exchange.submit_limit(Side::Buy, Price(100_00), 100, TimeInForce::GTC);
// Market order — IOC semantics at Price::MAX (buy) or Price::MIN (sell)
let result = exchange.submit_market(Side::Buy, 500);// Cancel — O(1) via tombstones
let result = exchange.cancel(order_id); // CancelResult { success, cancelled_quantity, error }
// Modify — cancel + replace (loses time priority, gets new OrderId)
let result = exchange.modify(order_id, Price(101_00), 200);let (bid, ask) = exchange.best_bid_ask(); // L1 — O(1)
let spread = exchange.spread(); // Option<i64>
let snap = exchange.depth(10); // L2 — top 10 levels
let full = exchange.full_book(); // L3 — everything
let order = exchange.get_order(OrderId(1)); // Option<&Order>
let trades = exchange.trades(); // &[Trade]exchange.clear_trades(); // Clear trade history
exchange.clear_order_history(); // Remove filled/cancelled orders
exchange.compact(); // Reclaim tombstone memoryThe try_submit_* methods validate inputs before processing:
let err = exchange.try_submit_limit(Side::Buy, Price(0), 100, TimeInForce::GTC);
assert_eq!(err.unwrap_err(), ValidationError::ZeroPrice);| TIF | Partial Fill? | Rests on Book? | No Liquidity |
|---|---|---|---|
| GTC | Yes | Yes (remainder) | Rests entirely |
| IOC | Yes | No (remainder cancelled) | Cancelled |
| FOK | No | No (all-or-nothing) | Cancelled |
| Type | Definition | Description | Display |
|---|---|---|---|
Price |
struct Price(pub i64) |
Price in smallest units (cents) | $100.50 |
Quantity |
type Quantity = u64 |
Number of shares/contracts | — |
OrderId |
struct OrderId(pub u64) |
Unique order identifier | O42 |
TradeId |
struct TradeId(pub u64) |
Unique trade identifier | T7 |
Timestamp |
type Timestamp = u64 |
Nanosecond counter (not wall clock) | — |
pub struct SubmitResult {
pub order_id: OrderId,
pub status: OrderStatus, // New | PartiallyFilled | Filled | Cancelled
pub trades: Vec<Trade>,
pub filled_quantity: Quantity,
pub resting_quantity: Quantity,
pub cancelled_quantity: Quantity,
}
pub struct Trade {
pub id: TradeId,
pub price: Price, // Resting order's price (aggressor gets price improvement)
pub quantity: Quantity,
pub aggressor_order_id: OrderId,
pub passive_order_id: OrderId,
pub aggressor_side: Side,
pub timestamp: Timestamp,
}| Enum | Variants | Key Methods |
|---|---|---|
Side |
Buy, Sell |
opposite() |
TimeInForce |
GTC, IOC, FOK |
can_rest(), allows_partial() |
OrderStatus |
New, PartiallyFilled, Filled, Cancelled |
is_active(), is_terminal() |
pub struct BookSnapshot {
pub bids: Vec<LevelSnapshot>, // Highest price first
pub asks: Vec<LevelSnapshot>, // Lowest price first
pub timestamp: Timestamp,
}
pub struct LevelSnapshot {
pub price: Price,
pub quantity: Quantity,
pub order_count: usize,
}| Method | Returns |
|---|---|
snap.best_bid() / best_ask() |
Option<Price> |
snap.spread() |
Option<i64> |
snap.mid_price() |
Option<f64> |
snap.total_bid_quantity() / total_ask_quantity() |
Quantity |
snap.imbalance() |
Option<f64> — [-1.0, 1.0], positive = buy pressure |
snap.weighted_mid() |
Option<f64> — leans toward less liquid side |
// Stop-market: triggers market order when last trade price hits stop
exchange.submit_stop_market(Side::Sell, Price(95_00), 100);
// Stop-limit: triggers limit order at limit_price when stop hits
exchange.submit_stop_limit(Side::Sell, Price(95_00), Price(94_50), 100, TimeInForce::GTC);| Side | Triggers When |
|---|---|
| Buy stop | last_trade_price >= stop_price |
| Sell stop | last_trade_price <= stop_price |
Key behaviors: immediate trigger if price already past stop, cascade up to 100 iterations, cancel via exchange.cancel(stop_id).
Three trailing methods — stop price tracks the market and only moves in the favorable direction:
// Fixed: triggers if price drops $2.00 from peak
exchange.submit_trailing_stop_market(Side::Sell, Price(98_00), 100, TrailMethod::Fixed(200));
// Percentage: trail by 5% from peak
exchange.submit_trailing_stop_market(Side::Sell, Price(95_00), 100, TrailMethod::Percentage(0.05));
// ATR-based: adaptive trailing using 2x ATR over 14-period window
exchange.submit_trailing_stop_market(Side::Sell, Price(95_00), 100,
TrailMethod::Atr { multiplier: 2.0, period: 14 });Trailing stop-limit variant: submit_trailing_stop_limit() — same parameters plus limit_price and TimeInForce.
Feature flag: event-log (enabled by default)
Every operation is recorded as an Event. Replaying events on a fresh exchange produces identical state.
// Save events
let events = exchange.events().to_vec();
// Reconstruct exact state
let replayed = Exchange::replay(&events);
assert_eq!(exchange.best_bid_ask(), replayed.best_bid_ask());Event types: SubmitLimit, SubmitMarket, Cancel, Modify.
Disable for max performance:
nanobook = { version = "0.9", default-features = false }Fixed-size instrument identifier. [u8; 8] inline — Copy, no heap allocation, max 8 ASCII bytes.
let sym = Symbol::new("AAPL");
assert!(Symbol::try_new("TOOLONGNAME").is_none());Independent per-symbol order books:
let mut multi = MultiExchange::new();
let aapl = Symbol::new("AAPL");
multi.get_or_create(&aapl).submit_limit(Side::Sell, Price(150_00), 100, TimeInForce::GTC);
for (sym, bid, ask) in multi.best_prices() {
println!("{sym}: bid={bid:?} ask={ask:?}");
}Feature flag: portfolio
Tracks cash, positions, costs, returns, and equity over time.
use nanobook::portfolio::{Portfolio, CostModel};
let cost = CostModel { commission_bps: 5, slippage_bps: 3, min_trade_fee: 1_00 };
let mut portfolio = Portfolio::new(1_000_000_00, cost);
// Rebalance to target weights
portfolio.rebalance_simple(&[(Symbol::new("AAPL"), 0.6)], &[(Symbol::new("AAPL"), 150_00)]);
// Record period return and compute metrics
portfolio.record_return(&[(Symbol::new("AAPL"), 155_00)]);
let metrics = compute_metrics(portfolio.returns(), 252.0, 0.0);- SimpleFill — instant at bar prices:
portfolio.rebalance_simple(targets, prices) - LOBFill — route through
Exchangematching engines:portfolio.rebalance_lob(targets, exchanges)
Per-symbol tracking with VWAP entry price and realized PnL:
let mut pos = Position::new(Symbol::new("AAPL"));
pos.apply_fill(100, 150_00); // buy 100 @ $150
pos.apply_fill(-50, 160_00); // sell 50 @ $160 → $500 realized PnLcompute_metrics(&returns, periods_per_year, risk_free) returns: total_return, cagr, volatility, sharpe, sortino, max_drawdown, calmar, num_periods, winning_periods, losing_periods.
Feature flag: parallel (implies portfolio)
use nanobook::portfolio::sweep::sweep;
let results = sweep(¶ms, 12.0, 0.0, |&leverage| {
vec![0.01 * leverage, -0.005 * leverage]
});Feature flag: portfolio
Implement compute_weights() for batch-oriented backtesting:
impl Strategy for MomentumStrategy {
fn compute_weights(
&self,
bar_index: usize,
prices: &[(Symbol, i64)],
_portfolio: &Portfolio,
) -> Vec<(Symbol, f64)> {
if bar_index < self.lookback { return vec![]; }
let w = 1.0 / prices.len() as f64;
prices.iter().map(|(sym, _)| (*sym, w)).collect()
}
}
let result = run_backtest(&strategy, &price_series, 1_000_000_00, CostModel::zero(), 12.0, 0.0);Built-in: EqualWeight strategy. Parallel variant: sweep_strategy().
The bridge between Python strategy code and Rust execution. Python computes a weight schedule, Rust simulates the portfolio at compiled speed.
use nanobook::backtest_bridge::backtest_weights;
let result = backtest_weights(
&weight_schedule, // &[Vec<(Symbol, f64)>] — target weights per period
&price_schedule, // &[Vec<(Symbol, i64)>] — prices per period
1_000_000_00, // initial cash in cents
15, // cost in basis points
252.0, // periods per year
0.0, // risk-free rate per period
);Returns BacktestBridgeResult:
| Field | Type | Description |
|---|---|---|
returns |
Vec<f64> |
Per-period returns |
equity_curve |
Vec<i64> |
Equity at each period (cents) |
final_cash |
i64 |
Ending cash balance |
metrics |
Option<Metrics> |
Sharpe, Sortino, max drawdown, etc. |
holdings |
Vec<Vec<(Symbol, f64)>> |
Per-period holdings weights |
symbol_returns |
Vec<Vec<(Symbol, f64)>> |
Per-period close-to-close symbol returns |
stop_events |
Vec<BacktestStopEvent> |
Stop trigger metadata (index, symbol, price, reason) |
result = nanobook.py_backtest_weights(
weight_schedule=[[("AAPL", 0.5), ("MSFT", 0.5)], ...],
price_schedule=[[("AAPL", 185_00), ("MSFT", 370_00)], ...],
initial_cash=1_000_000_00,
cost_bps=15,
periods_per_year=252.0,
risk_free=0.0,
stop_cfg={"trailing_stop_pct": 0.05},
)
# result["returns"], result["equity_curve"], result["metrics"],
# result["holdings"], result["symbol_returns"], result["stop_events"]GIL is released during computation for maximum throughput.
Clean aliases (no py_ prefix) are exported for new integrations:
backtest_weights, capabilities, garch_forecast, and optimize_*.
Capability probing contract used by calc.bridge:
import nanobook
def has_nanobook_feature(name: str) -> bool:
caps = set(nanobook.py_capabilities()) if hasattr(nanobook, "py_capabilities") else set()
if name in caps:
return True
symbol_map = {
"backtest_stops": "py_backtest_weights",
"garch_forecast": "py_garch_forecast",
"optimize_min_variance": "py_optimize_min_variance",
"optimize_max_sharpe": "py_optimize_max_sharpe",
"optimize_risk_parity": "py_optimize_risk_parity",
"optimize_cvar": "py_optimize_cvar",
"optimize_cdar": "py_optimize_cdar",
"backtest_holdings": "py_backtest_weights",
}
sym = symbol_map.get(name)
return bool(sym and hasattr(nanobook, sym))Crate: nanobook-broker
Generic trait over brokerages with concrete adapters for IBKR and Binance.
pub trait Broker {
fn connect(&mut self) -> Result<(), BrokerError>;
fn disconnect(&mut self) -> Result<(), BrokerError>;
fn positions(&self) -> Result<Vec<Position>, BrokerError>;
fn account(&self) -> Result<Account, BrokerError>;
fn submit_order(&self, order: &BrokerOrder) -> Result<OrderId, BrokerError>;
fn order_status(&self, id: OrderId) -> Result<BrokerOrderStatus, BrokerError>;
fn cancel_order(&self, id: OrderId) -> Result<(), BrokerError>;
fn quote(&self, symbol: &Symbol) -> Result<Quote, BrokerError>;
}pub struct Position {
pub symbol: Symbol,
pub quantity: i64, // Positive = long, negative = short
pub avg_cost_cents: i64,
pub market_value_cents: i64,
pub unrealized_pnl_cents: i64,
}
pub struct Account {
pub equity_cents: i64,
pub buying_power_cents: i64,
pub cash_cents: i64,
pub gross_position_value_cents: i64,
}
pub struct BrokerOrder {
pub symbol: Symbol,
pub side: BrokerSide, // Buy or Sell
pub quantity: u64,
pub order_type: BrokerOrderType, // Market or Limit(Price)
}
pub struct Quote {
pub symbol: Symbol,
pub bid_cents: i64,
pub ask_cents: i64,
pub last_cents: i64,
pub volume: u64,
}Feature: ibkr
Connects to TWS/Gateway via the ibapi crate (blocking API).
let mut broker = IbkrBroker::new("127.0.0.1", 4002, 1); // 4002 = paper, 4001 = live
broker.connect()?;
let positions = broker.positions()?;
let quote = broker.quote(&Symbol::new("AAPL"))?;Feature: binance
REST API via reqwest::blocking. Converts nanobook symbols (e.g., "BTC") to Binance pairs (e.g., "BTCUSDT").
let mut broker = BinanceBroker::new(api_key, secret_key, true); // testnet
broker.connect()?;broker = nanobook.IbkrBroker("127.0.0.1", 4002, client_id=1)
broker.connect()
positions = broker.positions() # List[Dict] with symbol, quantity, avg_cost_cents, ...
oid = broker.submit_order("AAPL", "buy", 100, order_type="limit", limit_price_cents=185_00)
quote = broker.quote("AAPL") # Dict with bid_cents, ask_cents, last_cents, volume
broker = nanobook.BinanceBroker(api_key, secret_key, testnet=True, quote_asset="USDT")Crate: nanobook-risk
Pre-trade risk validation for single orders and rebalance batches.
pub struct RiskConfig {
pub max_position_pct: f64, // Max single position as fraction of equity (default 0.25)
pub max_order_value_cents: i64, // Max single order value
pub max_batch_value_cents: i64, // Max rebalance batch value
pub max_leverage: f64, // Max gross exposure / equity (default 1.5)
pub max_drawdown_pct: f64, // Circuit breaker threshold (default 0.20)
pub allow_short: bool, // Allow short positions (default true)
pub max_short_pct: f64, // Max short exposure fraction (default 0.30)
pub min_trade_usd: f64,
pub max_trade_usd: f64, // Max single trade USD (default 100,000)
}Notes:
max_drawdown_pctis validated at engine construction and preserved in config, but not yet used in execution-time checks.
let engine = RiskEngine::new(RiskConfig::default());
let report = engine.check_order(
&Symbol::new("AAPL"),
BrokerSide::Buy,
100, // quantity
185_00, // price in cents
&account,
¤t_positions,
);
if report.has_failures() {
// Order violates risk limits — position concentration, short selling, etc.
}Validates a full rebalance against position limits, leverage, and short exposure:
let report = engine.check_batch(
&orders, // &[(Symbol, BrokerSide, u64, i64)]
&account,
¤t_positions,
&target_weights, // &[(Symbol, f64)]
);pub struct RiskReport {
pub checks: Vec<RiskCheck>,
}
pub struct RiskCheck {
pub name: &'static str,
pub status: RiskStatus, // Pass | Warn | Fail
pub detail: String,
}
impl RiskReport {
pub fn has_failures(&self) -> bool;
pub fn has_warnings(&self) -> bool;
}risk = nanobook.RiskEngine(max_position_pct=0.25, max_leverage=1.5)
# Single order
checks = risk.check_order("AAPL", "buy", 100, 185_00,
equity_cents=1_000_000_00,
positions=[("AAPL", 200)])
# Batch (full rebalance)
checks = risk.check_batch(
orders=[("AAPL", "buy", 100, 185_00), ("MSFT", "sell", 50, 370_00)],
equity_cents=1_000_000_00,
positions=[("AAPL", 200), ("MSFT", 100)],
target_weights=[("AAPL", 0.6), ("MSFT", 0.2)],
)
# Each check: {"name": "...", "status": "Pass|Warn|Fail", "detail": "..."}Crate: nanobook-rebalancer
CLI tool that bridges target weights to IBKR execution with risk checks, rate limiting, and audit trail.
- Read target weights from
target.json(output of your optimizer) - Connect to IBKR Gateway for live positions, prices, account data
- Compute CURRENT → TARGET diff (share quantities, limit prices)
- Run pre-trade risk checks (position limits, leverage, short exposure)
- Show plan, confirm (or
--forcefor automation) - Execute limit orders with rate limiting and timeout-based cancellation
- Reconcile and log to JSONL audit trail
rebalancer status # Check IBKR connection
rebalancer positions # Show current positions
rebalancer run target.json # Plan → confirm → execute
rebalancer run target.json --dry-run # Plan only
rebalancer run target.json --force # Skip confirmation (cron/automation)
rebalancer reconcile target.json # Compare actual vs target{
"timestamp": "2026-02-08T15:30:00Z",
"targets": [
{ "symbol": "AAPL", "weight": 0.40 },
{ "symbol": "MSFT", "weight": 0.30 },
{ "symbol": "SPY", "weight": -0.10 },
{ "symbol": "QQQ", "weight": 0.20 }
],
"constraints": {
"max_position_pct": 0.40,
"max_leverage": 1.5
}
}Positive weights are long, negative are short. Symbols absent from the target but present in the account get closed. See rebalancer/config.toml.example for the full configuration reference.
Install: pip install nanobook or cd python && maturin develop --release
ex = nanobook.Exchange()
result = ex.submit_limit("buy", 10050, 100, "gtc")
result = ex.submit_market("sell", 50)
ex.cancel(result.order_id)
bid, ask = ex.best_bid_ask()
snap = ex.depth(10)ex.submit_stop_market("sell", 9500, 100)
ex.submit_stop_limit("buy", 10500, 10600, 100, "gtc")
ex.submit_trailing_stop_market("sell", 9500, 100, "percentage", 0.05)portfolio = nanobook.Portfolio(1_000_000_00, nanobook.CostModel(commission_bps=10))
portfolio.rebalance_simple([("AAPL", 0.6)], [("AAPL", 150_00)])
portfolio.record_return([("AAPL", 155_00)])
metrics = portfolio.compute_metrics(252.0, 0.0)result = nanobook.run_backtest(
strategy=lambda bar, prices, portfolio: [("AAPL", 0.5), ("GOOG", 0.5)],
price_series=[{"AAPL": 150_00, "GOOG": 280_00}] * 252,
initial_cash=1_000_000_00,
cost_model=nanobook.CostModel.zero(),
)events = nanobook.parse_itch("data/sample.itch")let snap = exchange.depth(10);
if let Some(imb) = snap.imbalance() {
// [-1.0, 1.0]: positive = buy pressure
println!("Imbalance: {imb:.4}");
}if let Some(wmid) = snap.weighted_mid() {
println!("Weighted mid: {wmid:.2}");
}if let Some(vwap) = Trade::vwap(exchange.trades()) {
println!("VWAP: {vwap}");
}Feature flag: persistence (includes serde and event-log)
// Exchange — JSON Lines event sourcing
exchange.save(Path::new("orders.jsonl")).unwrap();
let loaded = Exchange::load(Path::new("orders.jsonl")).unwrap();
// Portfolio — JSON
portfolio.save_json(Path::new("portfolio.json")).unwrap();
let loaded = Portfolio::load_json(Path::new("portfolio.json")).unwrap();Feature flag: serde
All public types derive Serialize/Deserialize: Price, OrderId, TradeId, Symbol, Side, TimeInForce, OrderStatus, Order, Trade, Event, SubmitResult, CancelResult, ModifyResult, BookSnapshot, LevelSnapshot, StopOrder, Position, CostModel, and more.
Interactive REPL for the order book:
cargo run --bin lob| Command | Example |
|---|---|
buy <price> <qty> [ioc|fok] |
buy 100.50 100 |
sell <price> <qty> [ioc|fok] |
sell 101.00 50 ioc |
market <buy|sell> <qty> |
market buy 200 |
stop <buy|sell> <price> <qty> |
stop buy 105.00 100 |
cancel <order_id> |
cancel 3 |
book / trades |
Show book or trade history |
save <path> / load <path> |
Persistence (requires feature) |
Single-threaded (AMD Ryzen / Intel Core):
| Operation | Latency | Throughput | Complexity |
|---|---|---|---|
| Submit (no match) | 120 ns | 8.3M ops/sec | O(log P) |
| Submit (with match) | ~200 ns | 5M ops/sec | O(log P + M) |
| BBO query | ~1 ns | 1B ops/sec | O(1) |
| Cancel (tombstone) | 170 ns | 5.9M ops/sec | O(1) |
| L2 snapshot (10 levels) | ~500 ns | 2M ops/sec | O(D) |
Where P = price levels, M = orders matched, D = depth.
submit_limit() ~120 ns:
├── FxHashMap insert ~30 ns order storage
├── BTreeMap insert ~30 ns price level (O(log P))
├── VecDeque push ~5 ns FIFO queue
├── Event recording ~10 ns (optional, for replay)
└── Overhead ~45 ns struct creation, etc.
- O(1) cancel — Tombstone-based, 350x faster than linear scan
- FxHash — Non-cryptographic hash for OrderId lookups (+25% vs std HashMap)
- Cached BBO — Best bid/ask cached for O(1) access
- Optional event logging — disable
event-logfeature for max throughput
Single-threaded throughput is roughly equivalent (both compile to LLVM IR). Where Rust wins: zero cold-start (vs Numba's ~300 ms JIT), true parallelism via Rayon with no GIL contention, and deterministic memory without GC pauses.
| Library | Throughput | Order Types | Deterministic | Use Case |
|---|---|---|---|---|
| nanobook | 8M ops/sec | Limit, Market, Stops, GTC/IOC/FOK | Yes | Strategy backtesting |
| limitbook | 3-5M ops/sec | Limit, Market | No | General purpose |
| lobster | ~300K ops/sec | Limit, Market | No | Simple matching |
| OrderBook-rs | 200K ops/sec | Many (iceberg, peg, etc.) | No | Production HFT |
Engineering decisions that keep the system simple and fast:
| Constraint | Rationale |
|---|---|
| Single-threaded | Deterministic by design — same inputs always produce same outputs |
| In-process | No networking overhead; wrap externally if needed |
| No compliance | No self-trade prevention or circuit breakers (out of scope) |
| No complex orders | No iceberg or pegged orders |
| Integer prices | Fixed-point arithmetic avoids floating-point rounding |
| Statistics in Python | Spearman/IC/t-stat belong in scipy/Polars — proven, mature |