Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 34 additions & 0 deletions src/pages/about/docs.astro
Original file line number Diff line number Diff line change
Expand Up @@ -78,6 +78,8 @@ import Slideshow from "../../components/Slideshow.astro";
<ul class='list-group list-group-flush py-0'>
<li class='list-group-item py-0'><a class='text-decoration-none subsubsection' href='#same-page'> Within </a></li>
<li class='list-group-item py-0'><a class='text-decoration-none subsubsection' href='#int-page'> MechRef </a></li>
<li class = 'list-group-item py-0'><a class = 'text-decoration-none subsubsection' href = '#links_to_warnings'>Links to warnings</a></li>
<li class = 'list-group-item py-0'><a class = 'text-decoration-none subsubsection' href = '#links_to_examples'>Links to examples</a></li>
<li class='list-group-item py-0'><a class='text-decoration-none subsubsection' href='#ext-page'> External </a></li>
<li class='list-group-item py-0'><a class='text-decoration-none subsubsection' href='#ext-video'> Video </a></li>
</ul>
Expand Down Expand Up @@ -844,6 +846,38 @@ All titles should be done in sentence case.

</SubSubSection>

<SubSubSection title = "Links to Warnings" id = "links_to_warnings">
<p>
Tag type: Warning
</p>
Options:
<ul>
<li>href: insert the id of the warning you want to link to after '#warning_'.</li>
</ul>
Example:
<CodeBox language = "html" code = `<a href = "/xxx/CoursePage#warning_id">TEXT</a>`/>
<a href = "/dyn/vectors#warning_rvv-wl">TEXT</a>
<p>
<em>*For demonstration purposes, this links to a warning in the vectors page in dynamics.</em>
</p>
</SubSubSection>

<SubSubSection title = "Links to Examples" id = "links_to_examples">
<p>
Tag type: Example
</p>
Options:
<ul>
<li>href: insert the id of the example you want to link to after '#example_btn_'.</li>
</ul>
Example:
<CodeBox language = "html" code = `<a href = "/xxx/CoursePage#example_btn_id">TEXT</a>`/>
<a href = "/dyn/vectors#example_btn_rvv-xn">TEXT</a>
<p>
<em>*For demonstration purposes, this links to an example in the vectors page in dynamics.</em>
</p>
</SubSubSection>

<SubSubSection title="External page" id="ext-page">

<p>Tag type: Regular</p>
Expand Down
28 changes: 14 additions & 14 deletions src/pages/dyn/work_and_energy.astro
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,7 @@ import Col from "../../components/Col.astro"

<DisplayEquation equation="\\begin{aligned}\\vec{F} &amp;= -\\nabla V \\\\&amp; = -\\frac{\\partial V}{\\partial x}\\hat{\\imath} -\\frac{\\partial V}{\\partial y}\\hat{\\jmath} - \\frac{\\partial V}{\\partial z}\\hat{k}\\end{aligned}" id="ren-efp" title="Force and potential energy." background="True" derivation="True">
<p>
Beginning with <a href="#ren-ec">#ren-ec</a> and generalizing it to one-dimensional displacement in the y-direction, the equation becomes:
Beginning with <a href="#ren-wc">#ren-wc</a> and generalizing it to one-dimensional displacement in the y-direction, the equation becomes:
<DisplayEquation equation="\\begin{aligned} W &amp;= \\vec{F} \\cdot \\Delta{\\vec{y}} \\end{aligned}" />

</p>
Expand Down Expand Up @@ -105,7 +105,7 @@ import Col from "../../components/Col.astro"

</p>
<p>
Since gravity only acts in one direction, we can simplify <a href="ren-efp">#ren-efp</a> to:
Since gravity only acts in one direction, we can simplify <a href="#ren-efp">#ren-efp</a> to:
<DisplayEquation equation="\\begin{aligned} F &amp;= -\\frac{dV}{dy} \\\\ -mg &amp;= -\\frac{dV}{dy} \\\\ mg \\, dy &amp;= dV \\\\ \\end{aligned}" />

</p>
Expand Down Expand Up @@ -141,7 +141,7 @@ import Col from "../../components/Col.astro"

</p>
<p>
Since the restoring force in a spring only acts in one direction, we can simplify <a href="ren-efp">#ren-efp</a> to:
Since the restoring force in a spring only acts in one direction, we can simplify <a href="#ren-efp">#ren-efp</a> to:
<DisplayEquation equation="\\begin{aligned} F &amp;= -\\frac{dV}{dx} \\\\ -kx &amp;= -\\frac{dV}{dx} \\\\ kx \\, dx &amp;= dV \\\\ \\end{aligned}" />

</p>
Expand Down Expand Up @@ -238,12 +238,12 @@ import Col from "../../components/Col.astro"

</p>
<p>
Using conservation of energy, and the fact that a vector dotted with itself equals its magnitude squared (see <a href="rvi.html#rvi-eg">#rvi-eg</a>), then:
Using conservation of energy, and the fact that a vector dotted with itself equals its magnitude squared (see <a href="/dyn/vector_calculus#rvi-eg">#rvi-eg</a>), then:
<DisplayEquation equation="\\begin{aligned} T &amp; = \\frac{1}{2}mv^2\\\\ \\end{aligned}" />

</p>
<p>
Another perhaps less intuitive way is to begin with the work definition <a href="#ren-ef">#ren-ef</a>:
Another perhaps less intuitive way is to begin with the work definition <a href="#ren-wf">#ren-wf</a>:
<DisplayEquation equation="\\begin{aligned} W &amp;= \\int_{\\vec{r}_1}^{\\vec{r}_2} \\vec{F} \\cdot d\\vec{r} \\\\ &amp; = \\int_{t_1}^{t_2} \\vec{F} \\cdot \\dot{\\vec{r}}dt \\\\ &amp; = \\int_{t_1}^{t_2} \\vec{F} \\cdot \\vec{v} \\, dt \\end{aligned}" />

</p>
Expand Down Expand Up @@ -290,14 +290,14 @@ import Col from "../../components/Col.astro"

<DisplayEquation id="ren-ea" equation="T = \\frac{1}{2} m v_Q^2 + m \\vec{v}_Q \\cdot \\left( \\vec\\omega \\times \\vec{r}_{QC} \\right) + \\frac{1}{2} I_{Q,\\hat\\omega} \\omega^2" title="Kinetic energy of a rigid body about an arbitrary body point \\(Q\\)." background="True" derivation="true">
<p>
We start with the general expression <a href="#rem-eb">#rem-eb</a>:
We start with the general expression <a href="/dyn/geometric_properties#rem-eb">#rem-eb</a>:

<DisplayEquation equation="\\begin{aligned} T &amp;= \\iiint_{\\mathcal{B}} \\frac{1}{2} \\rho v_P^2 \\, dV, \\end{aligned}" />


where we integrate over the body with a location \(P\). We
choose a point \(Q\) fixed to the body and
use <a href="rkg.html#rkg-er">#rkg-er</a> to express the
use <a href="/dyn/rigid_body_kinematics#rkg-er">#rkg-er</a> to express the
velocity of \(P\) in terms of <InlineEquation equation="\\vec{v}_Q" /> and
\(\vec\omega\), giving

Expand All @@ -317,7 +317,7 @@ import Col from "../../components/Col.astro"
orthogonal distance to point \(P\) from the line through
\(Q\) in direction <InlineEquation equation="\\vec\\omega" />
, so
from <a href="rem.html#rem-ei">#rem-ei</a> we see that
from <a href="/dyn/geometric_properties#rem-ei">#rem-ei</a> we see that
the final integral above is the moment of inertia
<InlineEquation equation="I_{Q,\\hat\\omega}" />
about the axis through
Expand All @@ -327,13 +327,13 @@ import Col from "../../components/Col.astro"

<DisplayEquation id="ren-wk" equation="W = \\Delta T" title="Work-kinetic energy theorem." background="True" derivation="true">
<p>
Skipping the derivation shown in <a href="#ren-ep">#ren-ep</a>, taking the last step with the integral:
Skipping the derivation shown in <a href="#ren-ek">#ren-ek</a>, taking the last step with the integral:
<DisplayEquation equation="\\begin{aligned} \\int dW &amp; = \\int_{\\vec{v_1}}^{\\vec{v_2}}m\\vec{v} \\, d\\vec{v} \\\\ W &amp; = \\frac{1}{2}m\\left[\\vec{v} \\cdot \\vec{v}\\right]_{\\vec{v_1}}^{\\vec{v_2}} \\\\ &amp; = \\Delta T \\end{aligned}" />
</p>
</DisplayEquation>

<DisplayEquationCustom id="ren-eco" title="Work-energy theorem." background="True">
<DisplayEquation equation="W = \Delta T + \Delta V"/>
<DisplayEquation equation="W = \\Delta T + \\Delta V"/>
<p>
where \(W\) is the work done by non-conservative forces. If non-conservative forces are not present, then
it becomes conservation of energy.
Expand Down Expand Up @@ -405,7 +405,7 @@ import Col from "../../components/Col.astro"
</div>
</DisplayEquationCustom>

<DisplayEquationCustom id="ren-wm" title="Work done by a moment \\(M\\)." background="True" derivation="true">
<DisplayEquationCustom id="ren-wm" title="Work done by a moment \\(M\\)." background="True">
<DisplayEquation equation="\\begin{aligned}W &amp;= \\int_{\\theta_1}^{\\theta_2} M \\, d\\theta \\\\&amp; = \\int_{t_1}^{t_2} M \\dot\\theta \\, dt \\\\&amp;= M \\, \\Delta \\theta \\text{ (for constant M)}\\end{aligned}" />
<p>
The rotation angle \(\theta\) is measured around the same
Expand Down Expand Up @@ -463,7 +463,7 @@ import Col from "../../components/Col.astro"

<p> Work done by friction can be positive, zero, or negative. </p>

<Example id="wdf-rws" title="Friction during rolling wihtout slip." solution=True>
<Example id="wdf-rws" title="Friction during rolling without slip." solution=True>
<div>
<Image src="/dyn/work_and_energy/WorkForce_example2.png" width="10"></Image>
<ol>
Expand Down Expand Up @@ -501,7 +501,7 @@ import Col from "../../components/Col.astro"

<SubSubSection title="Work done by a moment" id="work_moment">

<DisplayEquation equation=" W = \\int_{\\theta_0}^{\\theta_f} M_z \\,d\\theta = \\int_{t_0}^{t_f} M_z \\ \\dot{\\theta} \\,d\\theta " background="True" id="wan-wm"> </DisplayEquation>
<DisplayEquation equation=" W = \\int_{\\theta_0}^{\\theta_f} M_z \\,d\\theta = \\int_{t_0}^{t_f} M_z \\ \\dot{\\theta} \\,dt" background="True" id="wan-wm"> </DisplayEquation>

<Example id="wdm-rm" title="Rod with friction moment." solution=True>
<div>
Expand Down Expand Up @@ -608,4 +608,4 @@ import Col from "../../components/Col.astro"

</Layout>

<script src="/dyn/work_and_energy/canvases.js" is:inline></script>
<script src="/dyn/work_and_energy/canvases.js" is:inline></script>