- install anaconda/miniconda and make a new environment:
conda create -n leafwood python==3.8
conda activate leafwood
- install required packages:
conda install pytorch==1.13.1 torchvision==0.14.1 pytorch-cuda=11.6 -c pytorch -c nvidia
pip install open3d==0.17.0 scikit-learn==1.2.1 tensorboard
- Install fork of open3D-ml
mkdir ~/repo
cd ~/repo
git clone https://github.com/woutervdbroeck/Open3D-ML
pip install -e .
- Install this package
mkdir ~/project
cd ~/project
git clone git+https://github.com/cavelab-ugent/pcl-segmentation@main
cd pcl-segmentation
pip install -e .
- make sure you have the latest version of wsl (in windows command prompt: wsl --update)
- make sure you have the latest correct windows nvidia driver
- install docker with docker compose inside WSL
- install nvidia toolkit for docker inside WSL (to allow gpu usage in docker container) see here
- check your data path in the docker-compose.yml file (under -volumes)
- start docker image:
cd ~/project/pcl-segmentation/docker
bash docker.sh
Everything should be specified in a a yammel config file in the cfg directory.
Example structure of files:
dataset_path
|- train_dir
|- val_dir
|- test_dir: in case of inference files should be placed inside this folder
|- file_name.npy
|- test_result_folder: predictions will be saved in this folder
run training: python scripts/train.py cfg/name_of_config_file.yml
run inference on new data: python scripts/infer.py cfg/name_of_config_file.yml