Skip to content

SAIST - Static AI-powered Scanning Tool! Scan literally anything with ✨ AI ✨

Notifications You must be signed in to change notification settings

punk-security/SAIST

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Maintenance Maintainer Docker Pulls

🪄 SAIST - Static AI-powered Scanning Tool

Scan anything with ✨ AI ✨ — spot vulnerabilities fast.


🚀 About

SAIST (Static AI-powered Scanning Tool) is an open-source project that scans codebases for vulnerabilities using AI.
It supports multiple LLMs, and can scan full codebases, diffs between commits, or even GitHub PRs automatically.

Bonus: It can even generate DevSecOps poems if you're feeling whimsical. 🎤

Lots of vendors are rushing to charge a crazy amount of money to simply throw your code through ChatGPT.

Well, now you can cut out the middle man and scan them yourself using SAIST (and choose whichever LLM you like).

We support OLLAMA for local / offline code scanning.


✨ Features

  • AI-powered vulnerability scanning for entire codebases
  • Diff scanning: Git commits, branches, or PRs
  • Multi-LLM support: OpenAI, Anthropic, Bedrock, DeepSeek, Gemini, Ollama
  • Filesystem, Git, GitHub PR scanning modes
  • Pattern-based file inclusion/exclusion using .saist.include and .saist.ignore
  • Interactive chat with your findings
  • Web server UI to view results
  • CSV export of findings
  • PDF report: Generate PDF reports of SAIST findings
  • CI/CD pipeline friendly (exit 1 on findings)

🛠️ Installation

Run direct

git clone https://github.com/punk-security/saist.git
cd saist
pip install -r requirements.txt

Run via docker

docker pull punksecurity/saist

📦 Usage

saist/main.py --llm <llm_provider> [options] {filesystem | git | github | poem}
# or via docker
docker run punksecurity/saist --llm <llm_provider> [options] {filesystem | git | github | poem}

Set your LLM API key with environment variable:

export SAIST_LLM_API_KEY=your-api-key

⚡ Examples

Task Command
Get a DevSecOps poem saist/main.py --llm openai poem
Scan a local folder saist/main.py --llm deepseek filesystem /path/to/code
Scan a local folder with ollama from within docker docker run --network=host -v <folder_path>:/vulnerableapp -v $PWD/reporting:/app/reporting punksecurity/saist --llm ollama --llm-model gemma3:4b fileystem /vulnerableapp
Scan a local Git repo saist/main.py --llm openai git /path/to/repo
Scan a local Git repo (branch diff) saist/main.py --llm openai git /path/to/repo --ref-for-compare main --ref-to-compare feature-branch
Scan a GitHub PR (and update the PR) saist/main.py --llm anthropic github yourorg/yourrepo 1234 --github-token your-token
Launch web server to view findings saist/main.py --llm deepseek --web filesystem /path/to/code
Interactive shell after scanning saist/main.py --llm ollama --interactive filesystem /path/to/code
Export findings as CSV saist/main.py --llm openai --csv filesystem /path/to/code
Scan with docker and export findings as PDF report docker run -v <folder_path>:/vulnerableapp -v $PWD/reporting:/app/reporting punksecurity/saist --llm openai --pdf filesystem /vulnerableapp
Scan with docker and export findings as PDF report with a project title docker run -v <folder_path>:/vulnerableapp -v $PWD/reporting:/app/reporting punksecurity/saist --llm openai --pdf --project-name "Project Name" filesystem /vulnerableapp
Scan with docker and retain cache for future runs docker run -v <folder_path>:/vulnerableapp -v $PWD/SAISTCache:/app/SAISTCache punksecurity/saist --llm openai filesystem /vulnerableapp
Change caching folder saist/main.py --llm openai --cache-folder /path/to/cache filesystem /path/to/code
Disable findings cache saist/main.py --llm openai --disable-caching filesystem /path/to/code

🗂️ File Filtering

saist respects file include/exclude rules via two optional files in the root of the project:

File Purpose
saist.include List of .gitignore-style patterns to include
saist.ignore List of .gitignore-style patterns to ignore
  • Patterns follow .gitignore syntax.
  • If saist.include does not exist, default extensions are used (e.g., .py, .js, .java, .go, etc).
  • Examples:
    • **/*.py includes all Python files
    • src/**/*.ts includes TypeScript files inside src
    • build/ will ignore the entire build folder
    • *.log will ignore all log files

You can also provide include/exclude patterns using the command-line arguments --include and --exclude.

  • Patterns provided via command-line arguments are appended to any patterns loaded from the rule files.
  • Examples:
    • --include '**/*.py' --include '**/*.ts' includes all Python and TypeScript files
    • --include '**' --exclude '*.log' includes all files except those ending in .log
    • --exclude 'node_modules/' excludes the entire node_modules directory

📝 Example

saist.include

**/*.py
**/*.ts
src/**/*.js

saist.ignore

tests/
docs/

This setup will:

  • Only scan .py, .ts, and specific .js files
  • Ignore anything under tests/ and docs/

📄 PDF report generation

saist allows you to generate PDF reports summarizing your findings, making it easier to share insights with your team.

To create a PDF report, simply use the --pdf flag when running the scan. By default, the report will be saved to reporting/report.pdf. You can customize the filename by using the --pdf-filename option followed by your desired filename.

To add a project name onto the title page of the PDF report, use the --project-name option followed by your desired title.

It is recommended to use the provided Docker image for generating PDF reports, as it includes the necessary TeX suite, which can be quite large. This ensures that all dependencies are met and the report is generated properly.

If not, you need to install latexmk to make it work.

🐋 Example (Docker)

To run saist using Docker and access the generated PDF report, you can mount a volume to ensure that the report is accessible on your host machine. Below is an example command that demonstrates how to do this with the filesystem SCM adapter.

docker run -v$PWD/code:/code -v$PWD/reporting:/app/reporting punksecurity/saist --pdf --llm <llm_provider> [options] filesystem /code
Volume Desciption
-v $PWD/code:/code Mounts the code directory from your host to the /code directory inside the container. This is where your codebase is located for scanning.
-v $PWD/reporting:/app/reporting Mounts the reporting directory from your host to the /app/reporting directory inside the container. This is where the generated PDF report will be saved, making it accessible on your host machine.

⚙️ Command Options

Option Description
--llm Select LLM (anthropic, deepseek, gemini, ollama, openai)
--llm-api-key API key for your LLM
--llm-model (Optional) Specific model (e.g., gpt-4o)
--interactive Chat with the LLM after scan
--web Launch a local web server
--disable-tools Disable tool use during file analysis to reduce LLM token usage
--disable-caching Disable finding caching during file analysis
--skip-line-length-check Skip checking files for a maximum line length
--max-line-length Maximum allowed line length, files with lines longer than this value will be skipped
--i, --include Pattern to explicitly include
--e, --exclude Pattern to explicitly ignore
--dry-run Exit after parsing configuration and collecting files, does not perform any analysis, useful for validating rules
--cache-folder Change the default cache folder
--csv Output findings to findings.csv
--pdf Output findings to PDF report (report.pdf)
--project-name Set the project name for the PDF report's title page (e.g. "Project name")
--ci Exit with code 1 if vulnerabilities found
-v, --verbose Increase output verbosity
Git-specific:
--ref-for-compare / --ref-to-compare Compare Git refs
--commit-for-compare / --commit-to-compare Compare Git commits
GitHub-specific:
--github-token GitHub token
repository / pr Repo and Pull Request ID

🧩 Architecture

  • Pluggable SCM adapters (filesystem, git, GitHub)
  • Modular LLM connectors
  • Async scanning for performance
  • Fine-grained file selection with patterns
  • Diff parsing for precise code review

🛣️ Roadmap

  • Ability to influence the prompts
  • Create a Github action
  • Add additional LLM support
  • Add additional SCM sources
  • SaaS platform version (maybe 👀)

🤝 Contributing

Pull requests are welcome!


⭐ Final Note

If you like it — star it ⭐, use it, and share feedback!
AI-assisted code scanning just got a lot more magical. 🪄

About

SAIST - Static AI-powered Scanning Tool! Scan literally anything with ✨ AI ✨

Resources

Stars

Watchers

Forks

Packages

No packages published

Contributors 8