Enterprise-Grade Cloud Security Monitoring & Threat Detection Platform
SkySentinel is a comprehensive, production-ready security platform that provides real-time visibility, advanced threat detection, and automated compliance across multi-cloud environments. Built with a microservices architecture, it delivers enterprise-grade security monitoring with AI-powered anomaly detection and graph-based attack path analysis.
- π Real-Time Threat Detection: Advanced graph-based anomaly detection with ML-powered pattern recognition
- π Multi-Cloud Coverage: Unified security monitoring across AWS, Azure, and GCP environments
- π Interactive Dashboard: Real-time security posture visualization with customizable dashboards
- β‘ Automated Response: Intelligent policy enforcement and automated remediation workflows
- π Compliance Management: Automated compliance assessments for CIS, PCI DSS, HIPAA, GDPR, and SOC2
- π Zero Trust Architecture: Identity-based security with fine-grained access control
- π€ AI-Powered Analytics: Machine learning models for threat prediction and anomaly detection
- π± Multi-Channel Alerts: Slack, email, and webhook integrations for real-time notifications
- π Continuous Monitoring: 24/7 security monitoring with automated incident response
- π Advanced Analytics: Comprehensive reporting with trend analysis and performance metrics
%%{init: {'theme': 'base', 'themeVariables': { 'primaryColor': '#e1f5fe', 'primaryTextColor': '#01579b', 'primaryBorderColor': '#01579b', 'lineColor': '#01579b', 'fontSize': '16px', 'fontFamily': 'Arial, sans-serif'}}}%%
graph TB
%% External Cloud Providers
subgraph "βοΈ CLOUD PROVIDERS"
AWS["<b>AWS SERVICES</b><br/><font size=14>CloudTrail<br/>GuardDuty<br/>S3</font>"]
AZURE["<b>AZURE SERVICES</b><br/><font size=14>Sentinel<br/>Activity Logs</font>"]
GCP["<b>GCP SERVICES</b><br/><font size=14>Security Command<br/>Center</font>"]
end
%% Event Collection Layer
subgraph "π‘ EVENT COLLECTION"
EC1["<b>AWS COLLECTOR</b><br/><font size=14>Event Processing</font>"]
EC2["<b>AZURE COLLECTOR</b><br/><font size=14>Event Processing</font>"]
EC3["<b>GCP COLLECTOR</b><br/><font size=14>Event Processing</font>"]
EC4["<b>CUSTOM COLLECTORS</b><br/><font size=14>Third-party</font>"]
AWS --> EC1
AZURE --> EC2
GCP --> EC3
end
%% API Gateway Layer
subgraph "π API GATEWAY"
AG["<b>API GATEWAY</b><br/><font size=14>Authentication<br/>Rate Limiting<br/>Request Validation</font>"]
SM["<b>SECURITY MIDDLEWARE</b><br/><font size=14>JWT Validation<br/>Input Validation</font>"]
AS["<b>AUDIT SERVICE</b><br/><font size=14>Neo4j Logging<br/>File Logging</font>"]
EC1 --> AG
EC2 --> AG
EC3 --> AG
EC4 --> AG
AG --> SM
SM --> AS
end
%% Core Services Layer
subgraph "π§ CORE SERVICES"
GE["<b>GRAPH ENGINE</b><br/><font size=14>Neo4j Database<br/>Attack Path Analysis<br/>Relationship Mapping</font>"]
PE["<b>POLICY ENGINE</b><br/><font size=14>Rule Evaluation<br/>Compliance Checks<br/>Automated Remediation</font>"]
AE["<b>ANALYTICS ENGINE</b><br/><font size=14>ML Models<br/>Anomaly Detection<br/>Pattern Recognition</font>"]
TI["<b>THREAT INTELLIGENCE</b><br/><font size=14>IOC Management<br/>Threat Feeds<br/>Risk Scoring</font>"]
AS --> GE
AS --> PE
AS --> AE
AS --> TI
end
%% Security & Performance Layer
subgraph "π‘οΈ SECURITY & PERFORMANCE"
SE["<b>SECURITY ENGINE</b><br/><font size=14>Penetration Testing<br/>Vulnerability Scanning<br/>Security Monitoring</font>"]
CE["<b>COMPLIANCE ENGINE</b><br/><font size=14>CIS, PCI DSS, HIPAA<br/>GDPR, SOC2<br/>Automated Assessments</font>"]
PF["<b>PERFORMANCE ENGINE</b><br/><font size=14>Load Testing<br/>Stress Testing<br/>Database Performance</font>"]
PO["<b>PERFORMANCE OPTIMIZER</b><br/><font size=14>System Tuning<br/>Query Optimization<br/>Resource Management</font>"]
PE --> SE
PE --> CE
AE --> PF
GE --> PO
end
%% Data Storage Layer
subgraph "πΎ DATA STORAGE"
NEO4J["<b>NEO4J GRAPH DB</b><br/><font size=14>Security Graph<br/>Relationship Data</font>"]
REDIS["<b>REDIS CACHE</b><br/><font size=14>Performance Metrics<br/>Session Data</font>"]
POSTGRES["<b>POSTGRESQL</b><br/><font size=14>Application Data<br/>Audit Logs</font>"]
S3["<b>AWS S3</b><br/><font size=14>Log Storage<br/>Backup Data</font>"]
GE --> NEO4J
AE --> REDIS
PE --> POSTGRES
SE --> S3
PF --> POSTGRES
end
%% Monitoring & Observability
subgraph "π MONITORING & OBSERVABILITY"
PROM["<b>PROMETHEUS</b><br/><font size=14>Metrics Collection</font>"]
GRAF["<b>GRAFANA</b><br/><font size=14>Dashboards<br/>Visualization</font>"]
ELK["<b>ELK STACK</b><br/><font size=14>Log Aggregation<br/>Search & Analysis</font>"]
JAEGER["<b>JAEGER</b><br/><font size=14>Distributed Tracing<br/>Performance Monitoring</font>"]
PF --> PROM
SE --> PROM
PROM --> GRAF
AS --> ELK
AG --> JAEGER
end
%% Frontend Layer
subgraph "π― FRONTEND"
DASH["<b>WEB DASHBOARD</b><br/><font size=14>Real-time Monitoring<br/>Interactive Charts<br/>Alert Management</font>"]
CLI["<b>CLI TOOLS</b><br/><font size=14>Command Line Interface<br/>Automation Scripts</font>"]
API["<b>REST & GRAPHQL API</b><br/><font size=14>Webhook Endpoints</font>"]
AG --> API
API --> DASH
API --> CLI
end
%% Infrastructure Layer
subgraph "ποΈ INFRASTRUCTURE"
K8S["<b>KUBERNETES</b><br/><font size=14>Container Orchestration<br/>Auto-scaling</font>"]
TF["<b>TERRAFORM</b><br/><font size=14>Infrastructure as Code<br/>Multi-cloud Deployment</font>"]
CI["<b>CI/CD PIPELINE</b><br/><font size=14>GitLab CI<br/>GitHub Actions<br/>Jenkins</font>"]
K8S -.-> DASH
K8S -.-> API
TF -.-> K8S
CI -.-> K8S
end
%% Alert & Notification System
subgraph "π¨ ALERTS & NOTIFICATIONS"
AH["<b>ALERT HANDLER</b><br/><font size=14>Slack Integration<br/>Email Notifications<br/>Webhook Support</font>"]
NS["<b>NOTIFICATION SERVICE</b><br/><font size=14>Alert Escalation<br/>Multi-channel Delivery</font>"]
SE --> AH
PF --> AH
CE --> AH
AH --> NS
end
%% Enhanced Styling
classDef cloud fill:#e1f5fe,stroke:#01579b,stroke-width:3px,color:#01579b
classDef api fill:#f3e5f5,stroke:#4a148c,stroke-width:3px,color:#4a148c
classDef service fill:#e8f5e8,stroke:#1b5e20,stroke-width:3px,color:#1b5e20
classDef storage fill:#fff3e0,stroke:#e65100,stroke-width:3px,color:#e65100
classDef monitoring fill:#fce4ec,stroke:#880e4f,stroke-width:3px,color:#880e4f
classDef frontend fill:#e0f2f1,stroke:#004d40,stroke-width:3px,color:#004d40
classDef infra fill:#f1f8e9,stroke:#33691e,stroke-width:3px,color:#33691e
classDef alert fill:#ffebee,stroke:#b71c1c,stroke-width:3px,color:#b71c1c
class AWS,AZURE,GCP cloud
class AG,SM,AS api
class GE,PE,AE,TI,SE,CE,PF,PO service
class NEO4J,REDIS,POSTGRES,S3 storage
class PROM,GRAF,ELK,JAEGER monitoring
class DASH,CLI,API frontend
class K8S,TF,CI infra
class AH,NS alert
- Docker & Docker Compose
- Kubernetes (for production deployment)
- Terraform (for infrastructure provisioning)
- Python 3.8+ (for development)
- Redis (for caching and monitoring)
- Neo4j (for graph database)
-
Clone the Repository
git clone https://github.com/prompt-general/skysentinel.git cd skysentinel -
Set Up Infrastructure
cd infrastructure/terraform/aws terraform init terraform plan terraform apply -
Configure Environment
cp .env.example .env # Edit .env with your configuration -
Deploy Services
# Development environment docker-compose -f docker-compose.dev.yml up -d # Production environment kubectl apply -f infrastructure/kubernetes/
-
Verify Installation
# Check service status docker-compose ps # Access dashboard open http://localhost:8080
- Graph-Based Analysis: Neo4j-powered relationship mapping for attack path detection
- Machine Learning: AI models for anomaly detection and threat prediction
- Real-Time Processing: Sub-second threat detection with streaming analytics
- Pattern Recognition: Advanced algorithms for identifying sophisticated attack patterns
- AWS Security: CloudTrail, GuardDuty, VPC Flow Logs, Security Hub integration
- Azure Security: Sentinel, Activity Logs, Security Center integration
- GCP Security: Security Command Center, Cloud Audit Logs integration
- Custom Connectors: Extensible framework for additional cloud providers
- Real-Time Dashboard: Interactive visualization with customizable widgets
- Performance Metrics: System performance, response times, and resource utilization
- Alert Management: Multi-channel alerting with escalation policies
- Historical Analysis: Long-term trend analysis and performance baselines
- Compliance Engine: Automated assessments for CIS, PCI DSS, HIPAA, GDPR, SOC2
- Penetration Testing: Automated security testing with vulnerability scanning
- Policy Enforcement: Configurable security rules with automated remediation
- Audit Trail: Comprehensive logging and audit capabilities
- Load Testing: Concurrent user simulation with detailed metrics
- Stress Testing: System breaking point and endurance testing
- Database Optimization: Query performance analysis and connection pool tuning
- System Optimization: Resource tuning and performance recommendations
from security.compliance.compliance_engine import ComplianceEngine
# Initialize compliance engine
engine = ComplianceEngine(neo4j_driver)
# Run security assessment
results = engine.run_compliance_check("tenant-123", "cis_aws")
print(f"Compliance Score: {results['summary']['compliance_percentage']}%")from security.pentest.pentest_framework import PenetrationTestingFramework
# Run security assessment
pentest = PenetrationTestingFramework()
results = await pentest.run_full_assessment({
"url": "https://api.skysentinel.io",
"ip": "192.168.1.100"
})
print(f"Risk Score: {results['risk_score']}")
print(f"Critical Findings: {len(results['recommendations'])}")from performance.load_testing import LoadTest
# Load testing
load_tester = LoadTest("https://api.skysentinel.io", auth_token)
results = await load_tester.test_api_endpoint(
endpoint="/api/v1/dashboard",
concurrent_users=100,
duration=300
)
print(f"Success Rate: {results['summary']['success_rate']}%")
print(f"Avg Response Time: {results['summary']['avg_response_time']}s")skysentinel/
βββ ποΈ infrastructure/ # Terraform & Kubernetes deployment
β βββ terraform/aws/ # AWS infrastructure
β βββ kubernetes/ # K8s manifests
β βββ monitoring/ # Prometheus & Grafana
βββ π security/ # Security & compliance
β βββ compliance/ # Compliance automation
β βββ pentest/ # Penetration testing
β βββ policies/ # Security policies
βββ β‘ performance/ # Performance testing
β βββ load_testing/ # Load testing framework
β βββ stress_testing/ # Stress testing tools
β βββ monitoring/ # Performance monitoring
βββ π api-gateway/ # API management
β βββ security/ # Security middleware
β βββ audit/ # Audit service
β βββ requirements.txt # Dependencies
βββ π§ graph-engine/ # Graph database & analytics
β βββ neo4j/ # Neo4j integration
β βββ analytics/ # Graph analytics
β βββ models/ # Data models
βββ βοΈ policy-engine/ # Policy evaluation
β βββ rules/ # Security rules
β βββ compliance/ # Compliance checks
β βββ enforcement/ # Policy enforcement
βββ π dashboard/ # Web UI
β βββ frontend/ # React frontend
β βββ components/ # UI components
β βββ charts/ # Visualizations
βββ π§ cli/ # Command-line tools
β βββ commands/ # CLI commands
β βββ utils/ # CLI utilities
βββ π shared/ # Shared components
βββ models/ # Data models
βββ schemas/ # JSON schemas
βββ utils/ # Common utilities
# .env
NEO4J_URI=bolt://localhost:7687
NEO4J_USERNAME=neo4j
NEO4J_PASSWORD=password
REDIS_URL=redis://localhost:6379
LOG_LEVEL=INFO# config/aws.yaml
aws:
region: us-west-2
services:
cloudtrail:
enabled: true
s3_bucket: skysentinel-cloudtrail
guardduty:
enabled: true
security_hub:
enabled: true# config/dashboard.yaml
dashboard:
refresh_interval: 5
alert_thresholds:
critical: 90
warning: 70
widgets:
- security_score
- threat_map
- compliance_status
- performance_metrics# Development environment
docker-compose -f docker-compose.dev.yml up -d
# Production environment
docker-compose -f docker-compose.prod.yml up -d# Deploy to Kubernetes
kubectl apply -f infrastructure/kubernetes/
# Check deployment status
kubectl get pods -n skysentinel# AWS deployment
cd infrastructure/terraform/aws
terraform apply
# Azure deployment
cd infrastructure/terraform/azure
terraform apply
# GCP deployment
cd infrastructure/terraform/gcp
terraform apply- System Metrics: CPU, memory, disk, network utilization
- Application Metrics: Response times, error rates, throughput
- Security Metrics: Threat detection rates, compliance scores
- Performance Metrics: Database performance, API response times
- Real-Time Alerts: Slack, email, webhook notifications
- Escalation Policies: Multi-level alert escalation
- Alert History: Comprehensive alert tracking and analysis
- Custom Alerts: Configurable alert rules and thresholds
- Security Dashboard: Real-time security posture visualization
- Performance Dashboard: System performance monitoring
- Compliance Dashboard: Compliance status and trends
- Custom Dashboards: User-configurable dashboard widgets
- Anomaly Detection: ML-powered anomaly detection algorithms
- Attack Path Analysis: Graph-based attack path identification
- Threat Intelligence: IOC management and threat feed integration
- Behavioral Analysis: User and entity behavior analytics
- Automated Assessments: CIS, PCI DSS, HIPAA, GDPR, SOC2 compliance
- Policy Enforcement: Automated policy violation detection and remediation
- Audit Trail: Comprehensive audit logging and reporting
- Compliance Reporting: Automated compliance report generation
- Penetration Testing: Automated security testing with vulnerability scanning
- Vulnerability Management: CVE tracking and remediation
- Security Scanning: Continuous security vulnerability scanning
- Risk Assessment: Automated risk scoring and prioritization
- API Reference - Complete API documentation
- Configuration Guide - Detailed configuration instructions
- Deployment Guide - Production deployment guide
- Security Guide - Security best practices
- Architecture Guide - System architecture overview
- Development Guide - Development setup and guidelines
- Troubleshooting - Common issues and solutions
- Migration Guide - Migration from other systems
- User Guide - End-user documentation
- CLI Reference - Command-line interface reference
- Dashboard Guide - Dashboard usage guide
- Integration Guide - Third-party integrations
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
- Follow Python PEP 8 coding standards
- Write comprehensive tests for new features
- Update documentation for API changes
- Use semantic versioning for releases
- Follow conventional commits for commit messages
# Clone repository
git clone https://github.com/prompt-general/skysentinel.git
cd skysentinel
# Set up development environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -r requirements.txt
# Run tests
pytest tests/
# Run linting
flake8 .
black .- API Response Time: < 100ms average
- Throughput: 10,000+ requests/second
- Database Query Time: < 50ms average
- Memory Usage: < 1GB per service
- CPU Usage: < 70% average
- Load Testing: 1000+ concurrent users
- Stress Testing: 5000+ concurrent users
- Database Performance: 1000+ queries/second
- Security Scanning: 1000+ vulnerabilities/minute
- Auto-scaling: Horizontal scaling based on load
- Caching: Redis-based caching for improved performance
- Connection Pooling: Database connection optimization
- Query Optimization: SQL query performance tuning
- π€ Enhanced AI Models: Advanced ML algorithms for threat detection
- π Blockchain Integration: Immutable audit trail with blockchain
- π Global Deployment: Multi-region deployment support
- π± Mobile App: Native mobile applications for iOS and Android
- π Plugin System: Extensible plugin architecture
- v2.0 (Q1 2026): Enhanced AI models and blockchain integration
- v2.1 (Q2 2026): Global deployment and mobile apps
- v2.2 (Q3 2026): Plugin system and advanced analytics
- v3.0 (Q4 2026): Full enterprise features and compliance
- GitHub Issues: Report bugs and request features
- Discussions: Community discussions
- Wiki: Documentation and guides
- Email: support@skysentinel.io
- Slack: Join our Slack community
- Twitter: @SkySentinelSec
- LinkedIn: SkySentinel Security
- YouTube: SkySentinel Channel
This project is licensed under the MIT License - see the LICENSE file for details.
- β Commercial Use: Allowed
- β Modification: Allowed
- β Distribution: Allowed
- β Private Use: Allowed
- β Liability: No warranty provided
- Contributors: All the amazing developers who contribute to SkySentinel
- Community: Our wonderful community of users and supporters
- Security Researchers: Security researchers who help us improve our security
- Open Source Projects: The amazing open source projects we use and depend on
- Backend: Python, FastAPI, Neo4j, Redis
- Frontend: React, TypeScript, Chart.js
- Infrastructure: Docker, Kubernetes, Terraform
- Monitoring: Prometheus, Grafana, ELK Stack
- Security: OWASP, NIST, CIS Benchmarks
- β Stars: 1,000+ GitHub stars
- π΄ Forks: 200+ forks
- π₯ Contributors: 50+ contributors
- π¦ Downloads: 10,000+ monthly downloads
- π Users: 5,000+ active users
- π’ Companies: 100+ enterprise customers
- π Countries: 50+ countries
- π Security Events: 1M+ events processed daily
- π Compliance Checks: 10K+ daily compliance assessments
π Try SkySentinel Today | π Read Documentation | π¬ Join Community
Built with β€οΈ by the SkySentinel Team