Skip to content

This is a simple ML library for Python written in C++

Notifications You must be signed in to change notification settings

pogrebitskiy/DaveML

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Example usage of library in Python

import DaveML
from DaveML import DataLoader
from DaveML import LinearRegression
from DaveML import RidgeRegression
from DaveML import LogisticRegression
from pprint import pprint
import numpy as np
# Params: Filepath, delimiter, Header(true,false), target column index
dl = DataLoader("datasets/Fish.csv", ',', True, 0)
X = dl.getX()
y = dl.gety()
X
array([[23.2   , 25.4   , 30.    , 11.52  ,  4.02  ],
       [24.    , 26.3   , 31.2   , 12.48  ,  4.3056],
       [23.9   , 26.5   , 31.1   , 12.3778,  4.6961],
       [26.3   , 29.    , 33.5   , 12.73  ,  4.4555],
       [26.5   , 29.    , 34.    , 12.444 ,  5.134 ],
       [26.8   , 29.7   , 34.7   , 13.6024,  4.9274],
       [26.8   , 29.7   , 34.5   , 14.1795,  5.2785],
       [27.6   , 30.    , 35.    , 12.67  ,  4.69  ],
       [27.6   , 30.    , 35.1   , 14.0049,  4.8438],
       [28.5   , 30.7   , 36.2   , 14.2266,  4.9594],
       [28.4   , 31.    , 36.2   , 14.2628,  5.1042],
       [28.7   , 31.    , 36.2   , 14.3714,  4.8146],
       [29.1   , 31.5   , 36.4   , 13.7592,  4.368 ],
       [29.5   , 32.    , 37.3   , 13.9129,  5.0728],
       [29.4   , 32.    , 37.2   , 14.9544,  5.1708],
       [29.4   , 32.    , 37.2   , 15.438 ,  5.58  ],
       [30.4   , 33.    , 38.3   , 14.8604,  5.2854],
       [30.4   , 33.    , 38.5   , 14.938 ,  5.1975],
       [30.9   , 33.5   , 38.6   , 15.633 ,  5.1338],
       [31.    , 33.5   , 38.7   , 14.4738,  5.7276],
       [31.3   , 34.    , 39.5   , 15.1285,  5.5695],
       [31.4   , 34.    , 39.2   , 15.9936,  5.3704],
       [31.5   , 34.5   , 39.7   , 15.5227,  5.2801],
       [31.8   , 35.    , 40.6   , 15.4686,  6.1306],
       [31.9   , 35.    , 40.5   , 16.2405,  5.589 ],
       [31.8   , 35.    , 40.9   , 16.36  ,  6.0532],
       [32.    , 35.    , 40.6   , 16.3618,  6.09  ],
       [32.7   , 36.    , 41.5   , 16.517 ,  5.8515],
       [32.8   , 36.    , 41.6   , 16.8896,  6.1984],
       [33.5   , 37.    , 42.6   , 18.957 ,  6.603 ],
       [35.    , 38.5   , 44.1   , 18.0369,  6.3063],
       [35.    , 38.5   , 44.    , 18.084 ,  6.292 ],
       [36.2   , 39.5   , 45.3   , 18.7542,  6.7497],
       [37.4   , 41.    , 45.9   , 18.6354,  6.7473],
       [38.    , 41.    , 46.5   , 17.6235,  6.3705],
       [12.9   , 14.1   , 16.2   ,  4.1472,  2.268 ],
       [16.5   , 18.2   , 20.3   ,  5.2983,  2.8217],
       [17.5   , 18.8   , 21.2   ,  5.5756,  2.9044],
       [18.2   , 19.8   , 22.2   ,  5.6166,  3.1746],
       [18.6   , 20.    , 22.2   ,  6.216 ,  3.5742],
       [19.    , 20.5   , 22.8   ,  6.4752,  3.3516],
       [19.1   , 20.8   , 23.1   ,  6.1677,  3.3957],
       [19.4   , 21.    , 23.7   ,  6.1146,  3.2943],
       [20.4   , 22.    , 24.7   ,  5.8045,  3.7544],
       [20.5   , 22.    , 24.3   ,  6.6339,  3.5478],
       [20.5   , 22.5   , 25.3   ,  7.0334,  3.8203],
       [21.    , 22.5   , 25.    ,  6.55  ,  3.325 ],
       [21.1   , 22.5   , 25.    ,  6.4   ,  3.8   ],
       [22.    , 24.    , 27.2   ,  7.5344,  3.8352],
       [22.    , 23.4   , 26.7   ,  6.9153,  3.6312],
       [22.1   , 23.5   , 26.8   ,  7.3968,  4.1272],
       [23.6   , 25.2   , 27.9   ,  7.0866,  3.906 ],
       [24.    , 26.    , 29.2   ,  8.8768,  4.4968],
       [25.    , 27.    , 30.6   ,  8.568 ,  4.7736],
       [29.5   , 31.7   , 35.    ,  9.485 ,  5.355 ],
       [23.6   , 26.    , 28.7   ,  8.3804,  4.2476],
       [24.1   , 26.5   , 29.3   ,  8.1454,  4.2485],
       [25.6   , 28.    , 30.8   ,  8.778 ,  4.6816],
       [28.5   , 31.    , 34.    , 10.744 ,  6.562 ],
       [33.7   , 36.4   , 39.6   , 11.7612,  6.5736],
       [37.3   , 40.    , 43.5   , 12.354 ,  6.525 ],
       [13.5   , 14.7   , 16.5   ,  6.8475,  2.3265],
       [14.3   , 15.5   , 17.4   ,  6.5772,  2.3142],
       [16.3   , 17.7   , 19.8   ,  7.4052,  2.673 ],
       [17.5   , 19.    , 21.3   ,  8.3922,  2.9181],
       [18.4   , 20.    , 22.4   ,  8.8928,  3.2928],
       [19.    , 20.7   , 23.2   ,  8.5376,  3.2944],
       [19.    , 20.7   , 23.2   ,  9.396 ,  3.4104],
       [19.8   , 21.5   , 24.1   ,  9.7364,  3.1571],
       [21.2   , 23.    , 25.8   , 10.3458,  3.6636],
       [23.    , 25.    , 28.    , 11.088 ,  4.144 ],
       [24.    , 26.    , 29.    , 11.368 ,  4.234 ],
       [ 7.5   ,  8.4   ,  8.8   ,  2.112 ,  1.408 ],
       [12.5   , 13.7   , 14.7   ,  3.528 ,  1.9992],
       [13.8   , 15.    , 16.    ,  3.824 ,  2.432 ],
       [15.    , 16.2   , 17.2   ,  4.5924,  2.6316],
       [15.7   , 17.4   , 18.5   ,  4.588 ,  2.9415],
       [16.2   , 18.    , 19.2   ,  5.2224,  3.3216],
       [16.8   , 18.7   , 19.4   ,  5.1992,  3.1234],
       [17.2   , 19.    , 20.2   ,  5.6358,  3.0502],
       [17.8   , 19.6   , 20.8   ,  5.1376,  3.0368],
       [18.2   , 20.    , 21.    ,  5.082 ,  2.772 ],
       [19.    , 21.    , 22.5   ,  5.6925,  3.555 ],
       [19.    , 21.    , 22.5   ,  5.9175,  3.3075],
       [19.    , 21.    , 22.5   ,  5.6925,  3.6675],
       [19.3   , 21.3   , 22.8   ,  6.384 ,  3.534 ],
       [20.    , 22.    , 23.5   ,  6.11  ,  3.4075],
       [20.    , 22.    , 23.5   ,  5.64  ,  3.525 ],
       [20.    , 22.    , 23.5   ,  6.11  ,  3.525 ],
       [20.    , 22.    , 23.5   ,  5.875 ,  3.525 ],
       [20.    , 22.    , 23.5   ,  5.5225,  3.995 ],
       [20.5   , 22.5   , 24.    ,  5.856 ,  3.624 ],
       [20.5   , 22.5   , 24.    ,  6.792 ,  3.624 ],
       [20.7   , 22.7   , 24.2   ,  5.9532,  3.63  ],
       [21.    , 23.    , 24.5   ,  5.2185,  3.626 ],
       [21.5   , 23.5   , 25.    ,  6.275 ,  3.725 ],
       [22.    , 24.    , 25.5   ,  7.293 ,  3.723 ],
       [22.    , 24.    , 25.5   ,  6.375 ,  3.825 ],
       [22.6   , 24.6   , 26.2   ,  6.7334,  4.1658],
       [23.    , 25.    , 26.5   ,  6.4395,  3.6835],
       [23.5   , 25.6   , 27.    ,  6.561 ,  4.239 ],
       [25.    , 26.5   , 28.    ,  7.168 ,  4.144 ],
       [25.2   , 27.3   , 28.7   ,  8.323 ,  5.1373],
       [25.4   , 27.5   , 28.9   ,  7.1672,  4.335 ],
       [25.4   , 27.5   , 28.9   ,  7.0516,  4.335 ],
       [25.4   , 27.5   , 28.9   ,  7.2828,  4.5662],
       [25.9   , 28.    , 29.4   ,  7.8204,  4.2042],
       [26.9   , 28.7   , 30.1   ,  7.5852,  4.6354],
       [27.8   , 30.    , 31.6   ,  7.6156,  4.7716],
       [30.5   , 32.8   , 34.    , 10.03  ,  6.018 ],
       [32.    , 34.5   , 36.5   , 10.2565,  6.3875],
       [32.5   , 35.    , 37.3   , 11.4884,  7.7957],
       [34.    , 36.5   , 39.    , 10.881 ,  6.864 ],
       [34.    , 36.    , 38.3   , 10.6091,  6.7408],
       [34.5   , 37.    , 39.4   , 10.835 ,  6.2646],
       [34.6   , 37.    , 39.3   , 10.5717,  6.3666],
       [36.5   , 39.    , 41.4   , 11.1366,  7.4934],
       [36.5   , 39.    , 41.4   , 11.1366,  6.003 ],
       [36.6   , 39.    , 41.3   , 12.4313,  7.3514],
       [36.9   , 40.    , 42.3   , 11.9286,  7.1064],
       [37.    , 40.    , 42.5   , 11.73  ,  7.225 ],
       [37.    , 40.    , 42.4   , 12.3808,  7.4624],
       [37.1   , 40.    , 42.5   , 11.135 ,  6.63  ],
       [39.    , 42.    , 44.6   , 12.8002,  6.8684],
       [39.8   , 43.    , 45.2   , 11.9328,  7.2772],
       [40.1   , 43.    , 45.5   , 12.5125,  7.4165],
       [40.2   , 43.5   , 46.    , 12.604 ,  8.142 ],
       [41.1   , 44.    , 46.6   , 12.4888,  7.5958],
       [30.    , 32.3   , 34.8   ,  5.568 ,  3.3756],
       [31.7   , 34.    , 37.8   ,  5.7078,  4.158 ],
       [32.7   , 35.    , 38.8   ,  5.9364,  4.3844],
       [34.8   , 37.3   , 39.8   ,  6.2884,  4.0198],
       [35.5   , 38.    , 40.5   ,  7.29  ,  4.5765],
       [36.    , 38.5   , 41.    ,  6.396 ,  3.977 ],
       [40.    , 42.5   , 45.5   ,  7.28  ,  4.3225],
       [40.    , 42.5   , 45.5   ,  6.825 ,  4.459 ],
       [40.1   , 43.    , 45.8   ,  7.786 ,  5.1296],
       [42.    , 45.    , 48.    ,  6.96  ,  4.896 ],
       [43.2   , 46.    , 48.7   ,  7.792 ,  4.87  ],
       [44.8   , 48.    , 51.2   ,  7.68  ,  5.376 ],
       [48.3   , 51.7   , 55.1   ,  8.9262,  6.1712],
       [52.    , 56.    , 59.7   , 10.6863,  6.9849],
       [56.    , 60.    , 64.    ,  9.6   ,  6.144 ],
       [56.    , 60.    , 64.    ,  9.6   ,  6.144 ],
       [59.    , 63.4   , 68.    , 10.812 ,  7.48  ],
       [ 9.3   ,  9.8   , 10.8   ,  1.7388,  1.0476],
       [10.    , 10.5   , 11.6   ,  1.972 ,  1.16  ],
       [10.1   , 10.6   , 11.6   ,  1.7284,  1.1484],
       [10.4   , 11.    , 12.    ,  2.196 ,  1.38  ],
       [10.7   , 11.2   , 12.4   ,  2.0832,  1.2772],
       [10.8   , 11.3   , 12.6   ,  1.9782,  1.2852],
       [11.3   , 11.8   , 13.1   ,  2.2139,  1.2838],
       [11.3   , 11.8   , 13.1   ,  2.2139,  1.1659],
       [11.4   , 12.    , 13.2   ,  2.2044,  1.1484],
       [11.5   , 12.2   , 13.4   ,  2.0904,  1.3936],
       [11.7   , 12.4   , 13.5   ,  2.43  ,  1.269 ],
       [12.1   , 13.    , 13.8   ,  2.277 ,  1.2558],
       [13.2   , 14.3   , 15.2   ,  2.8728,  2.0672],
       [13.8   , 15.    , 16.2   ,  2.9322,  1.8792]])
y
array([ 242. ,  290. ,  340. ,  363. ,  430. ,  450. ,  500. ,  390. ,
        450. ,  500. ,  475. ,  500. ,  500. ,  340. ,  600. ,  600. ,
        700. ,  700. ,  610. ,  650. ,  575. ,  685. ,  620. ,  680. ,
        700. ,  725. ,  720. ,  714. ,  850. , 1000. ,  920. ,  955. ,
        925. ,  975. ,  950. ,   40. ,   69. ,   78. ,   87. ,  120. ,
        100. ,  110. ,  120. ,  150. ,  145. ,  160. ,  140. ,  160. ,
        169. ,  161. ,  200. ,  180. ,  290. ,  272. ,  390. ,  270. ,
        270. ,  306. ,  540. ,  800. , 1000. ,   55. ,   60. ,   90. ,
        120. ,  150. ,  140. ,  170. ,  145. ,  200. ,  273. ,  300. ,
          5.9,   32. ,   40. ,   51.5,   70. ,  100. ,   78. ,   80. ,
         85. ,   85. ,  110. ,  115. ,  125. ,  130. ,  120. ,  120. ,
        130. ,  135. ,  110. ,  130. ,  150. ,  145. ,  150. ,  170. ,
        225. ,  145. ,  188. ,  180. ,  197. ,  218. ,  300. ,  260. ,
        265. ,  250. ,  250. ,  300. ,  320. ,  514. ,  556. ,  840. ,
        685. ,  700. ,  700. ,  690. ,  900. ,  650. ,  820. ,  850. ,
        900. , 1015. ,  820. , 1100. , 1000. , 1100. , 1000. , 1000. ,
        200. ,  300. ,  300. ,  300. ,  430. ,  345. ,  456. ,  510. ,
        540. ,  500. ,  567. ,  770. ,  950. , 1250. , 1600. , 1550. ,
       1650. ,    6.7,    7.5,    7. ,    9.7,    9.8,    8.7,   10. ,
          9.9,    9.8,   12.2,   13.4,   12.2,   19.7,   19.9])

Linear Regression

# Add Bias term before training
X = DataLoader.add_constant(X)

# Split data into train and test
X_train, y_train, X_test, y_test = DataLoader.trainTestSplit(X,y,0.2)

# Create regression object
linreg = LinearRegression()

# Train the model
linreg.fit(X_train, y_train)

# Output results
print(f'R2 Score on test set: {linreg.score(X_test, y_test)}\n')
print(f'Coefficients for linear model: {linreg.coefficients}')
R2 Score on test set: 0.8700421130641914

Coefficients for linear model: [-516.76987327   40.57633659    3.98457838  -22.3904408    23.66399307
   48.62068414]

Ridge Regression

X = dl.getX()
X = DataLoader.add_constant(X)
y = dl.gety()

# Train test split
X_train, y_train, X_test, y_test = DataLoader.trainTestSplit(X,y,0.2)

ridge = RidgeRegression()

# Params: X, y, alpha (penalty coefficient)
ridge.fit(X_train, y_train, 20)

# Output Results
print(f'R2 Score on test set: {ridge.score(X_test, y_test)}\n')
print(f'Coefficients for linear model: {ridge.coefficients}')
R2 Score on test set: 0.8121391150132838

Coefficients for linear model: [-214.04173121   53.92347905   10.16001537  -40.09192144   30.6868183
  -17.40733713]

Logistic Regression

# Load in data
dl = DataLoader("datasets/voice.csv", ',',True, 20)
X = dl.getX()
y = dl.gety()

# Add bias term to features
X = DataLoader.add_constant(X)

# Create regression object
logistic = LogisticRegression()

# Params: X, y, start_theta, learning rate, iterations
logistic.fit(X, y, np.zeros(X.shape[1]), 0.02, 1000)

print(f'Coefficients for linear model: {logistic.coefficients}')
Coefficients for linear model: [ 4.56118030e-01  1.40754862e-02  8.74969266e-02  1.46770888e-02
 -1.33709863e-01  1.32249688e-01  2.65959551e-01 -1.35551320e+00
  2.41488704e-01  5.98845795e-01  6.47911842e-01  2.55632494e-02
  1.40754862e-02 -1.83311083e-01  3.12970580e-03  8.10604034e-02
 -1.33784484e-02 -8.34245285e-02 -8.43412273e-02 -9.16698852e-04
  7.75575195e-02]
# Female Test case, grabbed from data
test_female = np.array([0.196623438573098,0.0396833940839021,0.199588759424263,0.188649760109664,0.213598355037697,0.0249485949280329,3.21840072313148,14.2664514713572,0.8427271293845,0.264958086407542,0.200164496230295,0.196623438573098,0.187679540165102,0.0636942675159236,0.256410256410256,0.5224609375,0.1904296875,3.6474609375,3.45703125,0.163912429378531]).reshape(1,-1)
# Add bias term
test_female = DataLoader.add_constant(test_female)
# Reshape because function expects a column vector
test_female=test_female.reshape(-1,1)

# Make prediction
logistic.predict(test_female)
0
# Male Test case, grabbed from data
test_male = np.array([0.190846297652897,0.0657902823878029,0.207950987066031,0.132280462899932,0.244356705241661,0.112076242341729,1.56230368302863,7.83434988641618,0.938546013440116,0.538809584118407,0.0501293396868618,0.190846297652897,0.113322801479182,0.0175438596491228,0.275862068965517,1.43411458333333,0.0078125,6.3203125,6.3125,0.25477978832366]).reshape(1,-1)
# Add bias term
test_male = DataLoader.add_constant(test_male)
# Reshape because function expects a column vector
test_male=test_male.reshape(-1,1)

# Make prediction
logistic.predict(test_male)
1

General Documentation

help(DaveML)
Help on module DaveML:

NAME
    DaveML - Welcome to my simple ML library implemented in C++

CLASSES
    pybind11_builtins.pybind11_object(builtins.object)
        DataLoader
        LinearRegression
            RidgeRegression
        LogisticRegression
    
    class DataLoader(pybind11_builtins.pybind11_object)
     |  Method resolution order:
     |      DataLoader
     |      pybind11_builtins.pybind11_object
     |      builtins.object
     |  
     |  Methods defined here:
     |  
     |  __init__(...)
     |      __init__(self: DaveML.DataLoader, arg0: str, arg1: str, arg2: bool, arg3: int) -> None
     |  
     |  add_constant(...)
     |      add_constant(self: numpy.ndarray[numpy.float64[m, n]]) -> numpy.ndarray[numpy.float64[m, n]]
     |  
     |  getX(...)
     |      getX(self: DaveML.DataLoader) -> numpy.ndarray[numpy.float64[m, n]]
     |  
     |  gety(...)
     |      gety(self: DaveML.DataLoader) -> numpy.ndarray[numpy.float64[m, 1]]
     |  
     |  standardizeFeatures(...)
     |      standardizeFeatures(self: numpy.ndarray[numpy.float64[m, n]]) -> numpy.ndarray[numpy.float64[m, n]]
     |  
     |  trainTestSplit(...)
     |      trainTestSplit(self: numpy.ndarray[numpy.float64[m, n]], arg0: numpy.ndarray[numpy.float64[m, 1]], arg1: float) -> Tuple[numpy.ndarray[numpy.float64[m, n]], numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, n]], numpy.ndarray[numpy.float64[m, 1]]]
     |  
     |  ----------------------------------------------------------------------
     |  Static methods inherited from pybind11_builtins.pybind11_object:
     |  
     |  __new__(*args, **kwargs) from pybind11_builtins.pybind11_type
     |      Create and return a new object.  See help(type) for accurate signature.
    
    class LinearRegression(pybind11_builtins.pybind11_object)
     |  Method resolution order:
     |      LinearRegression
     |      pybind11_builtins.pybind11_object
     |      builtins.object
     |  
     |  Methods defined here:
     |  
     |  __init__(...)
     |      __init__(self: DaveML.LinearRegression) -> None
     |  
     |  fit(...)
     |      fit(self: DaveML.LinearRegression, arg0: numpy.ndarray[numpy.float64[m, n]], arg1: numpy.ndarray[numpy.float64[m, 1]]) -> None
     |  
     |  predict(...)
     |      predict(self: DaveML.LinearRegression, arg0: numpy.ndarray[numpy.float64[m, n]]) -> numpy.ndarray[numpy.float64[m, 1]]
     |  
     |  score(...)
     |      score(self: DaveML.LinearRegression, arg0: numpy.ndarray[numpy.float64[m, n]], arg1: numpy.ndarray[numpy.float64[m, 1]]) -> float
     |  
     |  ----------------------------------------------------------------------
     |  Readonly properties defined here:
     |  
     |  coefficients
     |  
     |  ----------------------------------------------------------------------
     |  Static methods inherited from pybind11_builtins.pybind11_object:
     |  
     |  __new__(*args, **kwargs) from pybind11_builtins.pybind11_type
     |      Create and return a new object.  See help(type) for accurate signature.
    
    class LogisticRegression(pybind11_builtins.pybind11_object)
     |  Method resolution order:
     |      LogisticRegression
     |      pybind11_builtins.pybind11_object
     |      builtins.object
     |  
     |  Methods defined here:
     |  
     |  __init__(...)
     |      __init__(self: DaveML.LogisticRegression) -> None
     |  
     |  fit(...)
     |      fit(self: DaveML.LogisticRegression, arg0: numpy.ndarray[numpy.float64[m, n]], arg1: numpy.ndarray[numpy.float64[m, 1]], arg2: numpy.ndarray[numpy.float64[m, 1]], arg3: float, arg4: int) -> None
     |  
     |  gradient_cost(...)
     |      gradient_cost(self: numpy.ndarray[numpy.float64[m, 1]], arg0: numpy.ndarray[numpy.float64[m, n]], arg1: numpy.ndarray[numpy.float64[m, 1]]) -> numpy.ndarray[numpy.float64[m, 1]]
     |  
     |  predict(...)
     |      predict(self: DaveML.LogisticRegression, arg0: numpy.ndarray[numpy.float64[m, 1]]) -> int
     |  
     |  sigmoid(...)
     |      sigmoid(self: numpy.ndarray[numpy.float64[m, n]]) -> numpy.ndarray[numpy.float64[m, n]]
     |  
     |  ----------------------------------------------------------------------
     |  Readonly properties defined here:
     |  
     |  coefficients
     |  
     |  ----------------------------------------------------------------------
     |  Static methods inherited from pybind11_builtins.pybind11_object:
     |  
     |  __new__(*args, **kwargs) from pybind11_builtins.pybind11_type
     |      Create and return a new object.  See help(type) for accurate signature.
    
    class RidgeRegression(LinearRegression)
     |  Method resolution order:
     |      RidgeRegression
     |      LinearRegression
     |      pybind11_builtins.pybind11_object
     |      builtins.object
     |  
     |  Methods defined here:
     |  
     |  __init__(...)
     |      __init__(self: DaveML.RidgeRegression) -> None
     |  
     |  fit(...)
     |      fit(self: DaveML.RidgeRegression, arg0: numpy.ndarray[numpy.float64[m, n]], arg1: numpy.ndarray[numpy.float64[m, 1]], arg2: float) -> None
     |  
     |  ----------------------------------------------------------------------
     |  Methods inherited from LinearRegression:
     |  
     |  predict(...)
     |      predict(self: DaveML.LinearRegression, arg0: numpy.ndarray[numpy.float64[m, n]]) -> numpy.ndarray[numpy.float64[m, 1]]
     |  
     |  score(...)
     |      score(self: DaveML.LinearRegression, arg0: numpy.ndarray[numpy.float64[m, n]], arg1: numpy.ndarray[numpy.float64[m, 1]]) -> float
     |  
     |  ----------------------------------------------------------------------
     |  Readonly properties inherited from LinearRegression:
     |  
     |  coefficients
     |  
     |  ----------------------------------------------------------------------
     |  Static methods inherited from pybind11_builtins.pybind11_object:
     |  
     |  __new__(*args, **kwargs) from pybind11_builtins.pybind11_type
     |      Create and return a new object.  See help(type) for accurate signature.

FILE
    /Users/dpogrebitskiy/Documents/Programming/Fall 2022/CS3520/monorepo-pogrebitskiy/Assignment12_Project/part1/DaveML.so

About

This is a simple ML library for Python written in C++

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages