Skip to content
This repository was archived by the owner on May 6, 2023. It is now read-only.

A predictive analysis of credit defaulting in Python

Notifications You must be signed in to change notification settings

pogrebitskiy/Credit_Defaults

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

62 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Credit_Defaults

By: Nicolai Jacobsen, Jacob Kulik, David Pogrebitskiy, Gavin Wainwright

  • Written Report: CreditDefaults.docx.pdf

  • Raw Data: credit.csv

  • Preprocessed Data: balanced_credit.csv

Machine Learning Methods

  • K-Nearest Neighbors: knn.ipynb, knn.py, knn_sklearn.py, knn_comparison.ipynb
  • Logistic Regression: logistic_regression.ipynb
  • Decision Tree: decision_tree.py, decision_tree.ipynb
  • Random Forest: random_forest.ipynb
  • Neural Network: neural_network.ipynb

About

A predictive analysis of credit defaulting in Python

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •