This package is designed to make it easier to get data from redshift into a pandas DataFrame and vice versa. The pandas_redshift package only supports python3.
pip install pandas-redshiftimport pandas_redshift as prConnect to redshift. If port is not supplied it will be set to amazon default 5439
pr.connect_to_redshift(dbname = <dbname>,
host = <host>,
port = <port>,
user = <user>,
password = <password>)Query redshift and return a pandas DataFrame.
data = pr.redshift_to_pandas('select * from gawronski.nba_shots_log')
data.ix[0:5,0:5]
GAME_ID1 MATCHUP LOCATION W FINAL_MARGIN
0 21400899 MAR 4, 2015 - CHA @ BKN A W 24
1 21400899 MAR 4, 2015 - CHA @ BKN A W 24
2 21400899 MAR 4, 2015 - CHA @ BKN A W 24
3 21400899 MAR 4, 2015 - CHA @ BKN A W 24
4 21400899 MAR 4, 2015 - CHA @ BKN A W 24
5 21400899 MAR 4, 2015 - CHA @ BKN A W 24Write a pandas DataFrame to redshift. Requires access to an S3 bucket and previously running pr.connect_to_redshift.
If the table currently exists IT WILL BE DROPPED and then the pandas DataFrame will be put in it's place.
If you set append = True the table will be appended to (if it exists).
# Connect to S3
pr.connect_to_s3(aws_access_key_id = <aws_access_key_id>,
aws_secret_access_key = <aws_secret_access_key>,
bucket = <bucket>,
subdirectory = <subdirectory>)
# Write the DataFrame to S3 and then to redshift
pr.pandas_to_redshift(data_frame = data,
redshift_table_name = 'gawronski.nba_shots_log')Other options:
pr.pandas_to_redshift(data_frame,
redshift_table_name,
# Defaults:
column_data_types = None, # A list of column data types. If not supplied all columns will default to varchar(256)
index = False,
save_local = False, # If set to True a csv from the data frame will save in the current directory
delimiter = ',',
quotechar = '"',
dateformat = 'auto',
timeformat = 'auto',
append = False)Redshift data types: http://docs.aws.amazon.com/redshift/latest/dg/c_Supported_data_types.html
Finally close the cursor, commit and close the database connection, and remove variables from the environment.
pr.close_up_shop()As this package is largely a layer over psycopg2 a convenience function has been added to execute and commit sql queries that don't have anything to do with your local machine (for example creating a new table).
pr.exec_commit("""
create table combined_table as
select *
from table1
union
select *
from table2;
""")If you encounter the error: psycopg2.InternalError: current transaction is aborted, commands ignored until end of transaction block
you can access the pyscopg2 internals with the following:
pr.core.connect.commit()
pr.core.connect.rollback()