Sentinel-1 Burst and Frame Databases for OPERA CSLC-S1/DISP-S1
Follow the steps below to install burst_db using conda environment.
- Download source code:
git clone https://github.com/opera-adt/burst_db
cd burst_db- Install dependencies:
conda env create- Install via pip:
# run "pip install -e" to install in development mode
python -m pip install .Installing the package creates the opera-db command line tool:
$ opera-db --help
Usage: opera-db [OPTIONS] COMMAND [ARGS]...
Create/interact with OPERA's Sentinel-1 burst/frame databases.
Options:
--help Show this message and exit.
Commands:
create Generate the OPERA frame database for Sentinel-1...
historical Sub-commands for interacting with the historical...
intersect Query for frames intersecting a given bounding...
lookup Query the geopackage database for one frame ID.
make-burst-catalog Create a burst catalog and consistent burst JSON.
make-reference-dates Generate a reference dates JSON file for InSAR...
urls-for-frame Retrieve URLs for a specific FRAME_ID using the...
The opera-db create CLI will create the Sqlite database containing the burst IDs, bounding boxes, and UTM EPSG codes for all Sentinel-1 burst ID footprints.
The program uses the database of Sentinel-1 bursts released by ESA. The data can be downloaded from here, but if it is not present in the current directory, the program will download it automatically.
A larger GeoPackage is created which contains the burst footprint geometries, which can be viewed/queried with GIS program.
After making changes to the code, a new release can be created by running the following commands:
# For example, if the new version is 0.12.0
git tag v0.12.0
pip install -e .
# Setup in a new folder
mkdir -p test_012 && cd test_012
# Copy last CMR survey of CSLC products
cp ../test_011/cmr_survey.2016-07-01_to_2024-12-31.2025-06-12.opera-pcm-3.1.6.csv.tar.gz .
# OR: if updating, get the new survey from SDS
make -f ../MakefileThe result will be a folder with the following files:
$ ls test_012
burst_map_IW_000001_375887.sqlite3 opera-disp-s1-blackout-dates-2025-08-12.json
burst-id-geometries-simple-0.12.0.geojson opera-disp-s1-consistent-burst-ids-2025-08-12-2016-07-01_to_2024-12-31.json
burst-id-geometries-simple-0.12.0.geojson.zip opera-disp-s1-consistent-burst-ids-no-blackout.json
cmr_survey_2016-07-01_to_2024-12-31.csv opera-disp-s1-reference-dates-2025-08-12.json
cmr_survey.2016-07-01_to_2024-12-31.2025-06-12.opera-pcm-3.1.6.csv.tar.gz opera-s1-disp-0.12.0-2d.gpkg
cslc-burst-database-2025-08-12.duckdb opera-s1-disp-0.12.0-burst-to-frame.json.zip
frame-geometries-simple-0.12.0.geojson opera-s1-disp-0.12.0-frame-to-burst.json.zip
frame-geometries-simple-0.12.0.geojson.zip opera-s1-disp-0.12.0.gpkg
GSHHS_shp usgs_land_0.3deg_buffered.geojson.zip
opera-burst-bbox-only.sqlite3The other files created from opera-db create provide information for the Displacement frame. There are JSON files which map the burst IDs to frame IDs, and frame IDs to burst IDs.
The format of the frame-to-burst mapping is
{
"data" : {
"1": {
"epsg": 32631,
"is_land": False,
"is_north_america": False,
"xmin": 500160,
"ymin": 78240,
"xmax": 789960,
"ymax": 322740,
"burst_ids": [
"t001_000001_iw1",
"t001_000001_iw2",
"t001_000001_iw3",
"t001_000002_iw1",
...
"t001_000009_iw3"
]
}, ...
},
"metadata": {
"version": "0.1.2", "margin": 5000.0, ...
}
}where the keys of the the data dict are the frame IDs.
The burst-to-frame mapping has the structure
{
"data" : {
"t001_000001_iw1": {"frame_ids": [1]},
"t001_000001_iw2": {"frame_ids": [1]},
...
},
"metadata": {
"version": "0.1.2", "margin": 5000.0, ...
}
}These data structures can be read into python using the function build_frame_db.read_zipped_json .
The command also makes a full Geopackage database (which is based on sqlite), where the burst_id_map table contains the burst geometries, the frames table contains the frame geometries, and the frames_bursts table is the JOIN table for the many-to-many relationship.
An example SQL query to view all columns of these tables is
SELECT *
FROM frames f
JOIN frames_bursts fb ON fb.frame_fid = f.fid
JOIN burst_id_map b ON fb.burst_ogc_fid = b.ogc_fid
LIMIT 1;You can also drag the opera-s1-disp.gpkg file into QGIS to load the frames and burst_id_map tables to filter/view the geometries.
The following instructions show how to create the auxilliary database for DISP-S1 processing.
The example uses version 0.7.0.
- CMR survey file (gzipped)
- Snow blackout dates file (optional)
- Set up the output folder for the current release:
mkdir outputs-070
cd outputs-070- Copy in the CMR survey gzipped file and (optionally) snow blackout file
cp /path/to/survey/cmr-surveys/cmr_survey.2016-07-01_to_2024-12-10.csv.tar.gz .
cp /path/to/opera-disp-s1-blackout-dates-2024-10-16.json .- Run
make
make -f ../MakefileTypical processing should take ~5-8 minutes, depending on download speed.
To create the blackout input, the following module is used (currently no CLI):
import burst_db.create_blackout_dates_s1
burst_db.create_blackout_dates_s1.gdf_to_blackout_json(input_json_file)opera-db create # Creates the geopackage, and aux. geojson helper filesParse the "CMR survey" of all existing bursts, and keep a set which is consistent through space and time (i.e. no spatial gaps will appear while processing)
opera-db make-burst-catalog ...Set up a JSON, one key per DISP-S1 Frame ID, listing the "reference date changes". This indicates to the processing system that we should start outputting data with respect to a new reference, to avoid attempting to form very long temporal baseline interferograms.
opera-db make-reference-datesThe reconcile_and_label_db.py script is a standalone tool for reconciling differences between two burst database JSON files and adding processing mode labels to sensing times.
-
Database Reconciliation: Compares old and new consistent burst database JSON files and reconciles differences:
- If the new database has more burst IDs than the old for a frame, it uses the old burst IDs
- If the new database is missing sensing times from the old, it adds them back
- If there's no overlap in sensing times (indicating a complete restart after a gap), the new data is kept as-is
-
Processing Mode Labeling: Assigns processing mode labels to each sensing time:
historical_XX: Full batches of 15 sensing times (ready for historical processing)forward_XX: Partial batches with fewer than 15 sensing times (for forward processing)no_run: Groups with fewer than 15 total sensing times (insufficient data)- The
_XXsuffix (e.g.,_01,_02) indicates the group number, which increments after temporal gaps of 2+ years
# Reconcile two databases and add processing mode labels
python src/burst_db/reconcile_and_label_db.py \
--old-db old_consistent_burst_ids.json \
--new-db new_consistent_burst_ids.json \
--output labeled_output.json
# Only add processing mode labels (skip reconciliation)
python src/burst_db/reconcile_and_label_db.py \
--new-db input.json \
--output output.json \
--no-reconcile
# Customize batch size and gap threshold
python src/burst_db/reconcile_and_label_db.py \
--old-db old.json \
--new-db new.json \
--output output.json \
--batch-size 20 \
--gap-threshold 1.5 \
--verbose| Option | Description | Default |
|---|---|---|
--old-db |
Path to the old burst database JSON file | Required (unless --no-reconcile) |
--new-db |
Path to the new burst database JSON file | Required |
--output |
Path for the output JSON file | Required |
--no-reconcile |
Skip reconciliation, only add labels | False |
--batch-size |
Number of sensing times per batch | 15 |
--gap-threshold |
Gap threshold in years to restart batching | 2.0 |
--verbose |
Print detailed frame information | False |
The output JSON replaces the sensing_time_list array with a dictionary mapping sensing times to their labels:
{
"metadata": { ... },
"data": {
"831": {
"burst_id_list": ["t004_006645_iw1", "t004_006646_iw1", ...],
"sensing_time_list": {
"2016-07-02T23:05:35": "historical_01",
"2016-09-24T23:05:39": "historical_01",
...
"2025-10-19T23:06:08": "forward_01"
}
},
...
}
}