Entity prioritization and escalation detection using GLMM statistical models
pip install priorityximport pandas as pd
import priorityx as px
df = pd.read_csv("data.csv")
# Default: volume x growth (single GLMM)
results, stats = px.fit_priority_matrix(
df,
entity_col="service",
timestamp_col="date",
temporal_granularity="quarterly",
)
# Returns: entity, x_score, y_score, count, quadrant
px.plot_priority_matrix(results, entity_name="Service", save_plot=True)# Custom Y axis: volume × resolution_days (two GLMMs)
results, _ = px.fit_priority_matrix(
df,
entity_col="service",
timestamp_col="date",
y_metric="resolution_days",
)
# Custom both axes: disputed_amount × paid_amount
results, _ = px.fit_priority_matrix(
df,
entity_col="service",
timestamp_col="date",
x_metric="disputed_amount",
y_metric="paid_amount",
)# Add entity metrics
metrics = px.aggregate_entity_metrics(
df,
entity_col="service",
duration_start_col="opened_at",
duration_end_col="closed_at",
primary_col="exposure",
secondary_col="recovery",
)
results = results.merge(metrics, left_on="entity", right_on="service", how="left")
# Add weighted indices: RI (Risk), SQI (Service Quality), EWI (Early Warning)
results = px.add_priority_indices(
results,
volume_col="count",
growth_col="y_score",
severity_col="total_primary",
resolution_col="mean_duration",
recovery_col="secondary_to_primary_ratio",
# customize weights (default shown)
w_volume=0.4, w_growth=0.4, w_severity=0.2,
w_resolution=0.5, w_recovery=0.5,
w_risk=0.7, w_quality=0.3,
)
# Top priority entities
top_risks = results.nlargest(10, "EWI")- GLMM-based priority matrix (Q1–Q4) with entity-level intercept/slope insights
- Priority-based transition timeline (Crisis / Investigate / Monitor / Low) with spike markers (
*X,*Y,*XY) - Cumulative movement tracking and trajectory visualizations
- Transition driver analysis that surfaces top subcategories causing quadrant shifts with spike summaries
- Deterministic seeding option for reproducible GLMM runs (set
PRIORITYX_GLMM_SEED)
IT incidents, software bugs, compliance violations, performance monitoring.