- SGBT is also availabe on CapyMOA, Python stream learning framework.
- SGBT is now available on MOA main branch, Java stream learning framework.
- SGBR: SGBT with data stream regression support [paper] [code]
- datasets from Streaming Random Patches (SRP): https://github.com/hmgomes/StreamingRandomPatches/tree/master/datasets
- synthetic data sets:
LED_a_S="-s (ConceptDriftStream -s (generators.LEDGeneratorDrift -d 1) -d (ConceptDriftStream -s (generators.LEDGeneratorDrift -d 3) -d (ConceptDriftStream -s (generators.LEDGeneratorDrift -d 5) -d (generators.LEDGeneratorDrift -d 7) -w 50 -p 250000 ) -w 50 -p 250000 ) -w 50 -p 250000 -r $random_seed )"
LED_g_S="-s (ConceptDriftStream -s (generators.LEDGeneratorDrift -d 1) -d (ConceptDriftStream -s (generators.LEDGeneratorDrift -d 3) -d (ConceptDriftStream -s (generators.LEDGeneratorDrift -d 5) -d (generators.LEDGeneratorDrift -d 7) -w 50000 -p 250000 ) -w 50000 -p 250000 ) -w 50000 -p 250000 -r $random_seed )"
AGR_a_S="-s (ConceptDriftStream -s (generators.AgrawalGenerator -f 1) -d (ConceptDriftStream -s (generators.AgrawalGenerator -f 2) -d (ConceptDriftStream -s (generators.AgrawalGenerator ) -d (generators.AgrawalGenerator -f 4) -w 50 -p 250000 ) -w 50 -p 250000 ) -w 50 -p 250000 -r $random_seed )"
AGR_g_S="-s (ConceptDriftStream -s (generators.AgrawalGenerator -f 1) -d (ConceptDriftStream -s (generators.AgrawalGenerator -f 2) -d (ConceptDriftStream -s (generators.AgrawalGenerator ) -d (generators.AgrawalGenerator -f 4) -w 50000 -p 250000 ) -w 50000 -p 250000 ) -w 50000 -p 250000 -r $random_seed )"
RBF_m_S="-s (generators.RandomRBFGeneratorDrift -c 5 -s .0001 -r $random_seed -i $random_seed)"
RBF_f_S="-s (generators.RandomRBFGeneratorDrift -c 5 -s .001 -r $random_seed -i $random_seed)"
RBF_Bm_S="-s (generators.RandomRBFGeneratorDrift -c 2 -s .0001 -r $random_seed -i $random_seed)"
RBF_Bf_S="-s (generators.RandomRBFGeneratorDrift -c 2 -s .001 -r $random_seed -i $random_seed)"
RandomTreeGenerator_S="-s (generators.RandomTreeGenerator -r $random_seed -i $random_seed)"
RandomRBF5_S="-s (generators.RandomRBFGenerator -r $random_seed -i $random_seed -c 5)"
LED_S="-s (generators.LEDGenerator -i $random_seed)"
bash ./moa/src/main/scripts/reinit_conda.sh <conda_env_path> ./moa/src/main/scripts/conda.yml
bash ./moa/src/main/scripts/build_moa.sh <maven_repo_path> <conda_env_path>
bash moa/src/main/scripts/moa_gui_with_NN_support.sh <maven_repo_path> <conda_env_path> <djl_cache_dir>
bash <moa_source_root>/moa/src/main/scripts/run_moa.sh <dataset_dir> <results_dir> <djl_cache_dir> <maven_repo_path> <conda_env_path>
Notes:-
<moa_source_root>/moa/src/main/scripts/run_moa.sh could be copied to any place and run.
Change dataset variable in run_moa.sh to change the data set.
@article{gunasekara2024gradient,
title={Gradient boosted trees for evolving data streams},
author={Gunasekara, Nuwan and Pfahringer, Bernhard and Gomes, Heitor and Bifet, Albert},
journal={Machine Learning},
volume={113},
number={5},
pages={3325--3352},
year={2024},
doi={https://doi.org/10.1007/s10994-024-06517-y}
publisher={Springer}
}
Change learners variable in run_moa.sh to change learner command.