Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions CHANGES.rst
Original file line number Diff line number Diff line change
@@ -1,6 +1,10 @@
Changelog (niondata)
====================

UNRELEASED
----------
- Fix FFT calibration for odd dimensions.

15.9.0 (2025-06-25)
-------------------
- Add rectangle mask generation functions.
Expand Down
4 changes: 3 additions & 1 deletion nion/data/Core.py
Original file line number Diff line number Diff line change
Expand Up @@ -181,8 +181,10 @@ def calculate_data() -> _ImageDataType:

assert len(src_dimensional_calibrations) == len(Image.dimensional_shape_from_shape_and_dtype(data_shape, data_dtype) or ())

# zero_frequency_position = numpy.array((numpy.array(data_shape) // 2)) + 0.5

dimensional_calibrations = [
Calibration.Calibration((-0.5 - 0.5 * data_shape_n) / (dimensional_calibration.scale * data_shape_n),
Calibration.Calibration((-0.5 - data_shape_n // 2) / (dimensional_calibration.scale * data_shape_n),
1.0 / (dimensional_calibration.scale * data_shape_n),
"1/" + dimensional_calibration.units) for dimensional_calibration, data_shape_n in
zip(src_dimensional_calibrations, data_shape)]
Expand Down
17 changes: 17 additions & 0 deletions nion/data/test/Core_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -1319,6 +1319,23 @@ def test_rectangular_mask_generation_out_of_bounds_completely(self) -> None:
mask = mask_xdata.data
self.assertTrue(numpy.all(mask == 0))

def test_fft_zero_component_calibration(self) -> None:
dimensional_calibrations = (Calibration.Calibration(0, 1, "S"), Calibration.Calibration(0, 1, "S"))
xdata = DataAndMetadata.new_data_and_metadata(data=numpy.ones((16, 8)), dimensional_calibrations=dimensional_calibrations)
result = Core.function_fft(xdata)
self.assertAlmostEqual(0.0, result.dimensional_calibrations[0].convert_to_calibrated_value(8.5))
self.assertAlmostEqual(0.0, result.dimensional_calibrations[1].convert_to_calibrated_value(4.5))
xdata2 = DataAndMetadata.new_data_and_metadata(data=numpy.ones((15, 9)), dimensional_calibrations=dimensional_calibrations)
result2 = Core.function_fft(xdata2)
self.assertAlmostEqual(0.0, result2.dimensional_calibrations[0].convert_to_calibrated_value(7.5))
self.assertAlmostEqual(0.0, result2.dimensional_calibrations[1].convert_to_calibrated_value(4.5))
xdata3 = DataAndMetadata.new_data_and_metadata(data=numpy.ones((16,)), dimensional_calibrations=dimensional_calibrations[0:1])
result3 = Core.function_fft(xdata3)
self.assertAlmostEqual(0.0, result3.dimensional_calibrations[0].convert_to_calibrated_value(8.5))
xdata4 = DataAndMetadata.new_data_and_metadata(data=numpy.ones((15,)), dimensional_calibrations=dimensional_calibrations[0:1])
result4 = Core.function_fft(xdata4)
self.assertAlmostEqual(0.0, result4.dimensional_calibrations[0].convert_to_calibrated_value(7.5))


if __name__ == '__main__':
logging.getLogger().setLevel(logging.DEBUG)
Expand Down
Loading