We need predict the forest cover type (the predominant kind of tree cover) from strictly cartographic variables (as opposed to remotely sensed data). The actual forest cover type for a given 30 x 30 meter cell was determined from US Forest Service (USFS) Region 2 Resource Information System data.
Dataset url: [Kaggle](https://www.kaggle.com/competitions/forest-cover-type-prediction/data)
- Python
- FastAPI
- Machine learning
- Docker
- Mongodb
- AWS S3
- AWS EC2
- AWS ECR
- Git Actions
- Terraform
The dataset used to predict stroke is a dataset from Kaggle. This dataset has been used to predict student performance with different model algorithms. This dataset has:
- 581012 samples or rows
- 55 features or columns
- 1 target column (Cover_Type).
Creating conda environment
conda create -p venv python==3.8 -y
activate conda environment
conda activate ./venv
Install requirements
pip install -r requirements.txt
Export the environment variable
export AWS_ACCESS_KEY_ID=<AWS_ACCESS_KEY_ID>
export AWS_SECRET_ACCESS_KEY=<AWS_SECRET_ACCESS_KEY>
export AWS_DEFAULT_REGION=<AWS_DEFAULT_REGION>
export MONGODB_URL="mongodb+srv://<username>:<password>@ineuron-ai-projects.7eh1w4s.mongodb.net/?retryWrites=true&w=majority"
Run the live server using uvicorn
python app.py
To launch ui
http://127.0.0.1:5000/
- Scientists can predict future wild fires & hence can save flora and fona.
- Fire Rating Systems can be developed.






