Skip to content

mtkaya/medner-tr

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 

Repository files navigation

MedNER-TR

Turkish Medical Named Entity Recognition System

Performance

  • F1 Score: 99.49%
  • Precision: 99.49%
  • Recall: 99.49%
  • Accuracy: 99.76%

Links

Quick Start

from transformers import pipeline

ner = pipeline("token-classification", 
               model="tugrulkaya/medner-tr",
               aggregation_strategy="simple")

text = "Hastaya Parol 500mg baslandi."
results = ner(text)

Supported Entities

  • ILAC (Medications)
  • HASTALIK (Diseases)
  • SEMPTOM (Symptoms)
  • ORGAN (Organs)
  • TEST (Medical Tests)

Installation

pip install transformers torch

Examples

Example 1

text = "Hastaya Parol 500mg baslandi."
results = ner(text)
# Output: ILAC: Parol

Example 2

text = "Hasta ates, oksuruk ile basvurdu."
results = ner(text)
# Output: SEMPTOM: ates, SEMPTOM: oksuruk

License

MIT License - Free for commercial and research use

Contact

About

Turkish Medical Named Entity Recognition System

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published