Turkish Medical Named Entity Recognition System
- F1 Score: 99.49%
- Precision: 99.49%
- Recall: 99.49%
- Accuracy: 99.76%
- Demo: https://huggingface.co/spaces/tugrulkaya/medner-tr-demo
- Model: https://huggingface.co/tugrulkaya/medner-tr
from transformers import pipeline
ner = pipeline("token-classification",
model="tugrulkaya/medner-tr",
aggregation_strategy="simple")
text = "Hastaya Parol 500mg baslandi."
results = ner(text)- ILAC (Medications)
- HASTALIK (Diseases)
- SEMPTOM (Symptoms)
- ORGAN (Organs)
- TEST (Medical Tests)
pip install transformers torchtext = "Hastaya Parol 500mg baslandi."
results = ner(text)
# Output: ILAC: Paroltext = "Hasta ates, oksuruk ile basvurdu."
results = ner(text)
# Output: SEMPTOM: ates, SEMPTOM: oksurukMIT License - Free for commercial and research use
- GitHub: https://github.com/tugrulkaya/medner-tr
- Hugging Face: https://huggingface.co/tugrulkaya/medner-tr